Loading...
Search for: deformation-gradient
0.011 seconds

    Elastic-plastic modeling of kinematic hardening materials based on F = FeFp decomposition and the logarithmic strain tensor

    , Article Proceedings of the 7th Biennial Conference on Engineering Systems Design and Analysis - 2004, Manchester, 19 July 2004 through 22 July 2004 ; Volume 1 , 2004 , Pages 337-342 ; 0791841731 (ISBN); 9780791841730 (ISBN) Ghavam, K ; Naghdabadi, R ; Sharif University of Technology
    American Society of Mechanical Engineers  2004
    Abstract
    In this paper, based on the multiplicative decomposition of the deformation gradient tensor an elastic-plastic modeling of kinematic hardening materials is introduced. In this model, the elastic constitutive equation as well as the flow rule and hardening equation are expressed in terms of the corotational rate of the elastic and plastic logarithmic strains. As an application, the simple shear problem is solved and the stress components are plotted versus shear displacement for a kinematic hardening material  

    Modeling of rate dependent finite deformation viscoelastic behavior of foams

    , Article 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008, Boston, MA, 31 October 2008 through 6 November 2008 ; Volume 12 , 2009 , Pages 435-442 ; 9780791848739 (ISBN) Anani, Y ; Asghari, M ; Naghdabadi, R ; Sharif University of Technology
    2009
    Abstract
    The behavior of foams is typically rate-dependent and viscoelastic. In this paper, multiplicative decomposition of the deformation gradient and the second law of thermodynamics are employed to develop the differential constitutive equations for isotropic viscoelastic foams experiencing finite deformations, from a phenomenological point of view, i.e. without referring to micro-structural viewpoint. A model containing an equilibrium hyperelastic spring which is parallel to a Maxwell model has been utilized for introducing constitutive formulation. The deformation gradient tensor is decomposed into two parts: elastic deformation gradient tensor and viscoelastic deformation gradient tensor. A... 

    Investigation of Texture Effects on the Deformation of Sheet Metals using Crystal Plasticity Theory

    , M.Sc. Thesis Sharif University of Technology Khajeh Salehani, Mohsen (Author) ; Assempour, Ahmad (Supervisor) ; Mehdigholi, Hamid (Co-Advisor)
    Abstract
    The orientations which predominate in a final orientation distribution resulted from a specific deformation mode are the ideal orientations. There is a set of ideal orientations for each of crystal structures under a predefined mode of deformation. Ideal orientations are one of the material characteristics in the applied mode of deformation. The material texture strongly influences its final properties and affects the material behaviour in the subsequent forming processes.
    In this project, final texture of 1010 steel sheet resulted from simple tension mode of deformation is investigated computationally and experimentally. The calculated texture based on the simulation procedure is... 

    Multi-scale modeling of edge effect on band gap offset in polygonal cross-section Silicon nanowires

    , Article Computational Materials Science ; Volume 79 , 2013 , Pages 262-275 ; 09270256 (ISSN) Khoei, A. R ; Dormohammadi, H ; Aramoon, A ; Sharif University of Technology
    2013
    Abstract
    The band gap offset is an effect of coordination numbers (CNs) of atom reduction at the edge of transversal cross-section of Silicon nanowires (SiNWs). In this paper, a hierarchical multi-scale technique is developed to model the edge effect on the band gap shift of SiNWs since the geometric effect is dominant in the energy gap due to the appearance of strain in the self-equilibrium state. The multi-scale model is performed based on the molecular dynamics approach and finite element method for the micro- (atomistic) and macro-scale levels, respectively. The Cauchy-Born (CB) hypothesis is used to relate the atomic positions to the continuum field through the deformation gradient. Finally, the... 

    A viscoelastic constitutive model for compressible polymers based on logarithmic strain and its finite element implementation

    , Article Finite Elements in Analysis and Design ; Volume 62 , 2012 , Pages 18-27 ; 0168874X (ISSN) Naghdabadi, R ; Baghani, M ; Arghavani, J ; Sharif University of Technology
    2012
    Abstract
    In this paper, employing the logarithmic (or Hencky) strain as a more physical measure of strain, the time-dependent response of compressible viscoelastic materials is investigated. In this regard, we present a phenomenological finite strain viscoelastic constitutive model, developed within the framework of irreversible thermodynamics with internal variables. The formulation is based on the multiplicative decomposition of the deformation gradient into elastic and viscoelastic parts, together with the use of the isotropic property of the Helmholtz strain energy function. Making use of a logarithmic mapping, we present an appropriate form of the proposed constitutive equations in the... 

    Kinematics and kinetics description of thermoelastic finite deformation from multiplicative decomposition of deformation gradient viewpoint

    , Article Mechanics Research Communications ; Volume 37, Issue 6 , 2010 , Pages 515-519 ; 00936413 (ISSN) Darijani, H ; Kargarnovin, M. H ; Sharif University of Technology
    Abstract
    In this paper, using the multiplicative decomposition of the deformation gradient into mechanical and thermal parts, both kinematic and kinetic aspects of finite deformation thermoelasticity are considered. At first, the kinematics of the thermoelastic continua in the purely thermal process of nonisothermal deformation is investigated for finite deformation thermoelasticity. Also, a linear relation between the thermal expansion tensor and the rate of the thermal deformation tensor is presented. In order to model the mechanical behavior of thermoelastic continua in the stress-producing process of nonisothermal deformation, an isothermal effective stress-strain equation based on the... 

    A finite deformation viscoelastic-viscoplastic constitutive model for self-healing materials

    , Article Smart Materials and Structures ; Volume 25, Issue 12 , 2016 , Pages 1DUMMY- ; 09641726 (ISSN) Shahsavari, H ; Naghdabadi, R ; Baghani, M ; Sohrabpour, S ; Sharif University of Technology
    Institute of Physics Publishing  2016
    Abstract
    In this paper, employing the Hencky strain, viscoelastic-viscoplastic response of self-healing materials is investigated. Considering the irreversible thermodynamics and using the effective configuration in the Continuum Damage-Healing Mechanics (CDHM), a phenomenological finite strain viscoelastic-viscoplastic constitutive model is presented. Considering finite viscoelastic and viscoplastic deformations, total deformation gradient is multiplicatively decomposed into viscoelastic and viscoplastic parts. Due to mathematical advantages and physical meaning of Hencky strain, this measure of strain is employed in the constitutive model development. In this regard, defining the damage and healing... 

    A Mechanobiological model for damage-induced growth in arterial tissue with application to in-stent restenosis

    , Article Journal of the Mechanics and Physics of Solids ; Volume 101 , 2017 , Pages 311-327 ; 00225096 (ISSN) Fereidoonnezhad, B ; Naghdabadi, R ; Sohrabpour, S ; Holzapfel, G. A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    In-stent restenosis (ISR) is one of the main drawbacks of stent implementation which limits the long-term success of the procedure. Morphological changes occurring within the arterial wall due to stent-induced mechanical injury are a major cause for activation of vascular smooth muscle cells (VSMCs), and the subsequent development of ISR. Considering the theory of volumetric mass growth and adopting a multiplicative decomposition of the deformation gradient into an elastic part and a growth part, we present a mechanobiological model for ISR. An evolution equation is developed for mass growth of the neointima, in which the activation of VSMCs due to stent-induced damage (injury) and the... 

    An eulerian multiplicative constitutive model of finite elastoplasticity

    , Article European Journal of Mechanics, A/Solids ; Volume 28, Issue 6 , 2009 , Pages 1088-1097 ; 09977538 (ISSN) Heidari, M ; Vafai, A ; Desai, C ; Sharif University of Technology
    2009
    Abstract
    An Eulerian rate-independent constitutive model for isotropic materials undergoing finite elastoplastic deformation is formulated. Entirely fulfilling the multiplicative decomposition of the deformation gradient, a constitutive equation and the coupled elastoplastic spin of the objective corotational rate therein are explicitly derived. For the purely elastic deformation, the model degenerates into a hypoelastic-type equation with the Green-Naghdi rate. For the small elastic- and rigid-plastic deformations, the model converges to the widely-used additive model where the Jaumann rate is used. Finally, as an illustration, using a combined exponential isotropic-nonlinear kinematic hardening... 

    A thermodynamically consistent electro-chemo-mechanical theory for modeling axonal swelling

    , Article Journal of the Mechanics and Physics of Solids ; Volume 145 , 2020 Dehghany, M ; Naghdabadi, R ; Sohrabpour, S ; Li, Y ; Hu, Y ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the present study, for the first time, a thermodynamically consistent large deformation theory is developed to model the multi physics problem of axonal swelling which is the hallmark of most of the brain diseases. To this end, the relevant axonal compartments are first explained and the corresponding model parts are introduced. Next, the problem is formulated as an open thermodynamic system and the corresponding constitutive and evolution equations are extracted utilizing the balance laws. Here, a multiplicative decomposition of the deformation gradient is used to capture the active behavior of the axonal actin cortex. Specific free energy functions are given for the model parts to... 

    Constitutive modeling of temperature and strain rate dependent elastoplastic hardening materials using a corotational rate associated with the plastic deformation

    , Article International Journal of Plasticity ; Volume 27, Issue 9 , 2011 , Pages 1445-1455 ; 07496419 (ISSN) Ghavam, K ; Naghdabadi, R ; Sharif University of Technology
    Abstract
    In this paper, a constitutive model with a temperature and strain rate dependent flow stress (Bergstrom hardening rule) and modified Armstrong-Frederick kinematic evolution equation for elastoplastic hardening materials is introduced. Based on the multiplicative decomposition of the deformation gradient,new kinematic relations for the elastic and plastic left stretch tensors as well as the plastic deformation-dependent spin tensor are proposed. Also, a closed-form solution has been obtained for the elastic and plastic left stretch tensors for the simple shear problem.To evaluate model validity, results are compared with known experimental data for SUS 304 stainless steel, which shows a good... 

    Visco-hyperelastic constitutive law for modeling of foam's behavior

    , Article Materials and Design ; Volume 32, Issue 5 , 2011 , Pages 2940-2948 ; 02641275 (ISSN) Anani, Y ; Alizadeh, Y ; Sharif University of Technology
    2011
    Abstract
    This paper proposes a new visco-hyperelastic constitutive law for modeling the finite-deformation strain rate-dependent behavior of foams as compressible elastomers. The proposed model is based on a phenomenological Zener model, which consists of a hyperelastic equilibrium spring and a Maxwell element parallel to it. The hyperelastic equilibrium spring describes the steady state response. The Maxwell element, which captures the rate-dependency behavior, consists of a nonlinear viscous damper connected in series to a hyperelastic intermediate spring. The nonlinear damper controls the rate-dependency of the Maxwell element. Some strain energy potential functions are proposed for the two... 

    Stability and size-dependency of temperature-related Cauchy-Born hypothesis

    , Article Computational Materials Science ; Volume 50, Issue 5 , March , 2011 , Pages 1731-1743 ; 09270256 (ISSN) Khoei, A. R ; Ghahremani, P ; Abdolhosseini Qomi, M. J ; Banihashemi, P ; Sharif University of Technology
    2011
    Abstract
    In continuum mechanics, the constitutive models are usually based on the Cauchy-Born (CB) hypothesis which seeks the intrinsic characteristics of the material via the atomistic information and it is valid in small deformation. The main purpose of this paper is to investigate the temperature effect on the stability and size-dependency of Cauchy-Born hypothesis. Three-dimensional temperature-related Cauchy-Born formulations are developed for crystalline structure and the stability and size-dependency of temperature-related Cauchy-Born hypothesis are investigated by means of direct comparison between atomistic and continuous mediums. In order to control the temperature effect, the Nose-Hoover... 

    Modeling of visco-hyperelastic behavior of foams

    , Article 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008, Boston, MA, 31 October 2008 through 6 November 2008 ; Volume 12 , 2009 , Pages 425-433 ; 9780791848739 (ISBN) Anani, Y ; Asghari, M ; Naghdabadi, R ; Sharif University of Technology
    2009
    Abstract
    In this paper, a new visco-hyperelastic constitutive law for describing the rate dependent behavior of foams is proposed. The proposed model was based on a phenomenological Zener model: a hyperelastic equilibrium spring, which describes the steady-state, long-term response, parallel to a Maxwell element, which captures the rate-dependency. A nonlinear viscous damper connected in series to a hyperelastic intermediate spring, controls the rate-dependency of the Maxwell element. Therefore, the stress is the sum of equilibrium stress on the equilibrium spring and overstress on the intermediate spring. In hyperelastic theory stress is not calculated directly as in the case of small-strain, linear... 

    Temperature-dependent multi-scale modeling of surface effects on nano-materials

    , Article Mechanics of Materials ; Volume 46 , 2012 , Pages 94-112 ; 01676636 (ISSN) Khoei, A. R ; Ghahremani, P ; Sharif University of Technology
    Abstract
    In this paper, a novel temperature-dependent multi-scale method is developed to investigate the role of temperature on surface effects in the analysis of nano-scale materials. In order to evaluate the temperature effect in the micro-scale (atomic) level, the temperature related Cauchy-Born hypothesis is implemented by employing the Helmholtz free energy, as the energy density of equivalent continua relating to the inter-atomic potential. The multi-scale technique is applied in atomistic level (nano-scale) to exhibit the temperature related characteristics. The first Piola-Kirchhoff stress and tangential stiffness tensor are computed, as the first and second derivatives of the free energy...