Loading...
Search for: deformation-theory
0.011 seconds
Total 79 records

    Deformation of outer representations of galois group II

    , Article Iranian Journal of Mathematical Sciences and Informatics ; Volume 6, Issue 2 , 2011 , Pages 33-41 ; 17354463 (ISSN) Rastegar, A ; Sharif University of Technology
    2011
    Abstract
    This paper is devoted to deformation theory of "anabelian" representations of the absolute Galois group landing in outer automorphism group of the algebraic fundamental group of a hyperbolic smooth curve defined over a number-field. In the first part of this paper, we obtained several universal deformations for Lie-algebra versions of the above representation using the Schlessinger criteria for functors on Artin local rings. In the second part, we use a version of Schlessinger criteria for functors on the Artinian category of nilpotent Lie algebras which is formulated by Pridham, and explore arithmetic applications  

    Deformation of outer representations of Galois group

    , Article Iranian Journal of Mathematical Sciences and Informatics ; Volume 6, Issue 1 , 2011 , Pages 35-52 ; 17354463 (ISSN) Rastegar, A ; Sharif University of Technology
    2011
    Abstract
    To a hyperbolic smooth curve defined over a number-field one naturally associates "ananabelian" representation of the absolute Galois group of the base field landing in outer automorphism group of the algebraic fundamental group. In this paper, we introduce several deformation problems for Lie-algebra versions of the above representation and show that, this way we get a richer structure than those coming from deformations of "abelian" Galois representations induced by the Tate module of associated Jacobian variety. We develop an arithmetic deformation theory of graded Lie algebras with finite dimensional graded components to serve our purpose  

    On the deformation theory of Calabi-Yau structures in strongly pseudo-convex manifolds

    , Article Bulletin of the Brazilian Mathematical Society ; Volume 41, Issue 3 , September , 2010 , Pages 409-420 ; 16787544 (ISSN) Bahraini, A ; Sharif University of Technology
    2010
    Abstract
    We study the deformation theory of Calabi-Yau structures in strongly pseudo-convex manifolds with trivial canonical bundles. Our approach could be considered as an alternative proof for a theorem of H. Laufer on the deformation of strongly pseudo-convex surfaces  

    Dynamic analysis of composite beam subjected to harmonic moving load based on the third-order shear deformation theory

    , Article Frontiers of Mechanical Engineering ; Volume 6, Issue 4 , December , 2011 , Pages 409-418 ; 20950233 (ISSN) Rezvanil, M. J ; Kargarnovin, M. H ; Younesian, D ; Sharif University of Technology
    Abstract
    The response of an infinite Timoshenko beam subjected to a harmonic moving load based on the thirdorder shear deformation theory (TSDT) is studied. The beam is made of laminated composite, and located on a Pasternak viscoelastic foundation. By using the principle of total minimum potential energy, the governing partial differential equations of motion are obtained. The solution is directed to compute the deflection and bending moment distribution along the length of the beam. Also, the effects of two types of composite materials, stiffness and shear layer viscosity coefficients of foundation, velocity and frequency of the moving load over the beam response are studied. In order to... 

    Nonlinear analysis of FGM plates under pressure loads using the higher-order shear deformation theories

    , Article Composite Structures ; Volume 89, Issue 3 , 2009 , Pages 333-344 ; 02638223 (ISSN) Sarfaraz Khabbaz, R ; DehghanManshadi, B ; Abedian, A ; Sharif University of Technology
    2009
    Abstract
    In this study, the energy concept along with the first- and third-order shear deformation theories (FSDT and TSDT) are used to predict the large deflection and through the thickness stress of FGM plates. These responses are studied and discussed as a function of plate thickness and the order "n" of a power law function which is considered for the through the thickness variation of the properties of the FGM plate. The results show that the energy method powered by the FSDT and FSDT is capable of predicting the effects of plate thickness on the deformation and the through the thickness stress. Here, also the effects of power "n" on the plate response is clearly depicted. Notably, the... 

    Mathematical modeling of anisotropic hyperelastic cylindrical thick shells by incorporating thickness deformation and compressibility with application to arterial walls

    , Article International Journal of Structural Stability and Dynamics ; Volume 22, Issue 13 , 2022 ; 02194554 (ISSN) Borjalilou, V ; Asghari, M ; Sharif University of Technology
    World Scientific  2022
    Abstract
    This paper is devoted to mathematical modeling of anisotropic hyperelastic thick cylindrical shells like arteries by taking into account the volume compressibility and through-the-thickness deformation. To describe the hyperelastic behavior of this kind of shells and extract their constitutive relations, the modified anisotropic (MA) model is employed, which is able to characterize compressible behavior of hyperelastic materials like soft tissues. By considering the arterial segment as a thick cylindrical shell, the higher order thickness deformation shell theory together with nonlinear Green's strains are exploited to express its deformations and capture the thickness stretching effect. The... 

    A study on the axial stresses of P-FGM, SFGM and E-FGM plates under pressure loading using the energy concept

    , Article 27th Congress of the International Council of the Aeronautical Sciences 2010, ICAS 2010, 19 September 2010 through 24 September 2010, Nice ; Volume 3 , 2010 , Pages 2060-2068 ; 9781617820496 (ISBN) Dastoom Laatleyli, H ; Abedian, A ; Sharif University of Technology
    2010
    Abstract
    In this study the energy concept along with the classical plate theory (CPT), first and third order shear deformation theories (FSDT and TSDT) are used to predict the large deflection and through the thickness stresses of a FGM plate. For defining the volume fraction of the FGM constituent materials three different functions are considered; simple power-law (PFGM), exponential (E-FGM) and sigmoid (S_FGM) functions. Power-law and exponential functions are commonly used tocontrol the variations of properties of FGMs. However, with both functions, a stress concentration appears due to abruptchange of the volume fraction of the constituents. Therefore, a sigmoid FGM is used to define a new... 

    Interlaminar stress analysis of general composite laminates

    , Article International Journal of Mechanical Sciences ; Volume 53, Issue 11 , 2011 , Pages 958-967 ; 00207403 (ISSN) Yazdani Sarvestani, H ; Yazdani Sarvestani, M ; Sharif University of Technology
    Abstract
    In this study, based on the reduced from of elasticity displacement field for a long laminate, an analytical method is established to exactly obtain the interlaminar stresses near the free edges of generally laminated composite plates under the extension and bending. The constant parameters, which describe the global deformation of a laminate, are properly computed by means of the improved first-order shear deformation theory. Reddys layerwise theory is subsequently utilized for analytical and numerical examinations of the boundary layer stresses within arbitrary laminated composite plates. A variety of numerical results are obtained for the interlaminar normal and shear stresses along the... 

    Dynamic analysis of generally laminated composite beam with a delamination based on a higher-order shear deformable theory

    , Article Journal of Composite Materials ; Volume 49, Issue 2 , 2015 , Pages 141-162 ; 00219983 (ISSN) Jafari Talookolaei, R. A ; Abedi, M ; Kargarnovin, M. H ; Ahmadian, M. T ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    In this study, the dynamic response of the laminated composite beam with arbitrary lay-ups has been investigated within the framework of the third-order shear deformation theory using the finite element method. A new three-nodded finite element compliant with the theory is introduced next. To deal with the dynamic contact between the delaminated segments, unilateral contact constraints are employed in conjunction with Lagrange multiplier method. Furthermore, the Poisson's effect is incorporated in the formulation of the beam constitutive equation. Also, the higher-order inertia effects and material couplings (flexure-tensile, flexure-twist and tensile-twist couplings) are considered in the... 

    Differential quadrature method for nonlocal nonlinear vibration analysis of a boron nitride nanotube using sinusoidal shear deformation theory

    , Article Mechanics of Advanced Materials and Structures ; Volume 23, Issue 11 , 2016 , Pages 1278-1283 ; 15376494 (ISSN) Sadatshojaei, E ; Sadatshojaie, A ; Fakhar, M. H ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    This article presents a nonlocal sinusoidal shear deformation beam theory (SDBT) for the nonlinear vibration of single-walled boron nitride nanotubes (SWBNNTs). The surrounding elastic medium is simulated based on nonlinear Pasternak foundation. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion of the SWBNNTs are derived using Hamilton's principle. Differential quadrature method (DQM) for the nonlinear frequency is presented, and the obtained results are compared with those predicted by the nonlocal Timoshenko beam theory (TBT). The effects of nonlocal parameter, vibrational modes, length, and elastic medium on the nonlinear frequency of SWBNNTs... 

    Natural frequency analysis of functionally graded material truncated conical shell with lengthwise material variation based on first-order shear deformation theory

    , Article Mechanics of Advanced Materials and Structures ; Volume 23, Issue 5 , 2016 , Pages 565-577 ; 15376494 (ISSN) Asanjarani, A ; Kargarnovin, M. H ; Satouri, S ; Satouri, A ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    Based on the first-order shear deformation theory, the free vibration of the functionally graded (FG) truncated conical shells is analyzed. The truncated conical shell materials are assumed to be isotropic and inhomogeneous in the longitudinal direction. The two-constituent FG shell consists of ceramic and metal. These constituents are graded through the length, from one end of the shell to the other end. Using Hamilton's principle the derived governing equations are solved using differential quadrature method. Fast rate of convergence of this method is tested and its advantages over other existing solver methods are observed. The primary results of this study were obtained for four... 

    Free vibration of a functionally graded annular sector plate integrated with piezoelectric layers

    , Article Applied Mathematical Modelling ; Volume 79 , 2020 , Pages 341-361 Shahdadi, A ; Rahnama, H ; Sharif University of Technology
    Elsevier Inc  2020
    Abstract
    Based on the first order shear deformation theory, free vibration behavior of functionally graded (FG) annular sector plates integrated with piezoelectric layers is investigated. The distribution of electric potential along the thickness direction of piezoelectric layers which is assumed to be a combination of linear and sinusoidal functions, satisfies both open and closed circuit electrical boundary conditions. Through a reformulation of governing equations and harmonic motion assumption, a novel decoupling method is suggested to transform the six second order coupled partial differential equations of motion into two eighth order and fourth order equations. A Fourier series method is then... 

    Analysis of functionally graded cylindrical panel under mechanical loading

    , Article ASME International Mechanical Engineering Congress and Exposition, IMECE 2007, Seattle, WA, 11 November 2007 through 15 November 2007 ; Volume 10 PART B , 2008 , Pages 867-876 ; 0791843041 (ISBN); 9780791843048 (ISBN) Ghaderi, P ; Fathizadeh, A ; Bankehsaz, M ; Sharif University of Technology
    2008
    Abstract
    In this paper a semi-analytical method is developed to analyze functionally graded cylindrical panels. In this method, the radial domain is divided into some finite sub-domains and the material properties are assumed to be constant in each subdomain. Imposing the continuity conditions at the interface of the adjacent sub-domains, together with the global boundary conditions, a set of linear algebraic equations are derived. Solving the linear algebraic equations, the elastic response for the thick-walled FG cylindrical panel is obtained. The method can be used for all material properties variations but in present study, material properties are assumed vary with Mori-Tanaka estimation. Results... 

    Dynamic simulation of the ultra-fast-rotating sandwich cantilever disk via finite element and semi-numerical methods

    , Article Engineering with Computers ; Volume 38 , 2022 , Pages 4127-4143 ; 01770667 (ISSN) Wu, J ; Habibi, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    In the presented research, vibrational, and amplitude behaviors of a sandwich spinning disk made of two laminated layers and graphene nanoplatelets reinforced composite (GPLRC) core has been reported. The Coriolis and centrifugal impacts have been taken into account due to its rotational feature. The stresses and strains have been obtained through the high-order shear deformable theory (HSDT). The structure’s boundary conditions (BCs) are determined using laminated rotating disk’s governing equations employing energy methods and ultimately have been solved via a computational approach called generalized differential quadrature method (GDQM). The rotational disk’s vibrations with different... 

    Application of Endurance Time Method on Optimal Performance Based Design of Steel Structures

    , M.Sc. Thesis Sharif University of Technology Charkhtab Basim, Mohammad (Author) ; Esmaeil Pourestekanchi, Homayoon (Supervisor)
    Abstract
    In recent decades, most of the codes have placed a high value on Performance Based Design of structures; however, these methods are computationally complex and time-consuming, and caused researchers to seek new and efficient methods to investigate performance of structures under different intensities of seismic loading. This issue is much more obvious when optimum design of structures, which requires repetitive analysis, is investigated. In the present research, using Endurance Time analysis, we are trying to provide better insights into the dynamic behavior of structures in continuous performance levels. Then, as a first step, we will use the verified method to find the optimum outline of... 

    Stress Analysis in Symmetric Composite Laminates Subjected to Shearing Load

    , M.Sc. Thesis Sharif University of Technology Mousanezhad Viyand, Davood (Author) ; Nosier, Asghar (Supervisor)
    Abstract
    In the present study, an analytical solution is developed to calculate the interlaminar stresses in long symmetric laminated composite plates subjected to shearing load. At first, upon the successive integrations of the strain-displacement relations and using the existing patterns in deformation of a long symmetric laminate, the general displacement field is extracted and simplified to the final form. Presented solution is based on a combined method containing the equivalent single-layer (ESL) theories beside the Reddy’s layerwise theory. In this method, the equivalent single-layer theories are utilized because of their simplicity and low computational efforts rather than the layerwise... 

    Panel Flutter Analysis of Cylindrical Constrained Layer Damping (CLD) Panels

    , M.Sc. Thesis Sharif University of Technology Sadeghmanesh, Mostafa (Author) ; Haddadpour, Hassan (Supervisor)
    Abstract
    The purpose of this study is to analytically study the aeroelastic characteristics of the cylindrical shells fully treated with passive constrained layer damping (PCLD) to indicate the effects of various parameters on the behavior of such structures. Constraining the viscoelastic layers increases the amount of dissipated energy and the bending stiffness of the structure without considerable change of the weight.
    A thin shell theory in conjunction with the Donell assumptions is employed for the shell and the constraining layer (CL) and the first order shear deformation theory (FSDT) is used for the viscoelastic layer to construct the model. The effects of rotary inertia and shear... 

    Free Vibration Analysis of Moderately Thick Rectangular Plate Made of Functionally Graded Material on Arbitrary Supports Using Extended Kantorovich Method

    , M.Sc. Thesis Sharif University of Technology Fallah, Ali (Author) ; Kargarnovin, Mohammad Hossein (Supervisor) ; Mohammadi Aghdam, Mohamamd (Supervisor)
    Abstract
    In this study, free vibration analysis of moderately thick rectangular FG plates with general boundary conditions is investigated. Governing equations of motion are obtained based on the Mindlin plate theory. A semi analytical solution is presented for the governing equations using extended Kantorovich method (EKM). Results are compared and validated with available results in the literature. Effects of different parameters such as boundary conditions, material and geometrical parameters on natural frequencies of the FG plates are investigated  

    Free Vibration Analysis of FG Annular Sector Plates Using Extended Kantrovich Method

    , M.Sc. Thesis Sharif University of Technology Garshasbi, Omid (Author) ; Fallah Rajabzadeh, Famida (Supervisor)
    Abstract
    In this study the free vibration of annular sector plates made of functional materials with using the extended Katrovich method is investigated for a variety of boundary conditions. For this purpose, based on the first order shear deformation theory and Hamilton's principle, equations of motion that they are five differential equations and coupled, are derived. Due to the difficulty of the equations obtained by applying extended kantrovich method on these equations, two ordinary differential equations obtained, the two categories combined fixed and simple boundary conditions will be solved by using generalized differential quadrature and in an iterative process system natural frequency is... 

    Dynamic Stability of Cylindrical Shells Made of Functionally-Graded Materials under Axial Follower Forces

    , M.Sc. Thesis Sharif University of Technology Torki Harchegani, Mohammad Ebrahim (Author) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    Due to major problems induced by delamination in laminated composites, functionally-graded materials (FGM) have been put to growing use in recent years. In the present research, dynamic stability of FGM cylindrical shells under axial follower loads is addressed. Loading was considered in three forms: concentrated (Beck’s problem), uniformly-distributed (Leipholz’s problem), and linearly-distributed (Hauger’s problem). In order to derive the governing equations, Love’s hypotheses and First-order Shear Theory (FST) were used. To solve the equations, polynomial mode shapes were used to approximate the displacements, and the extended Galerkin method was applied. The problem was solved for mild...