Search for: dense-systems
0.007 seconds

    Extension of the dense system equation of state to electrolyte solutions

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 26, Issue 1 , 2007 , Pages 17-33 ; 10219986 (ISSN) Parsafar, G ; Panahi, A ; Sharif University of Technology
    In this work we have applied the Dense System Equation of State (DSEOS) to electrolyte solutions. We have found that this equation of state can predict the density of electrolyte solutions very accurately. It has been tested for different electrolytes solutions at different temperatures and compositions. A hypothetical binary model has been applied to find the dependencies of parameters of this equation of state on solution temperature and composition. Using such a simple model the heat capacity of NaCl solution was calculated for which the absolute percent deviation is less than 2 %. The DSEOS is tested for the following electrolytes: Na2SO4, MgCl2, MgSO4, KCl, NaCl, and NaBr. We found that... 

    Analysis of different EOSs in predicting the ideal curve and deriving the temperature dependencies of their parameters

    , Article International Journal of Thermophysics ; Volume 25, Issue 6 , 2004 , Pages 1819-1834 ; 0195928X (ISSN) Parsafar, G. A ; Saydi, H ; Sharif University of Technology
    Regularities shown by different fluids along the contour of the ideal compressibility factor Z= PV/(RT)=1 in the temperature density plane was used to test the accuracy of the equations of state and derive temperature dependencies of their parameters. The contour, also known as the Zeno line, was empirically observed to be nearly linear. The precision of the van der Waals equation in predicting the Zeno line was evaluated. It was shown that the equation could predict a linear relation between temperature and density on the Z=1 contour, qualitatively  

    Influence of quantum effect on deviation from linear isotherm regularity

    , Article Scientia Iranica ; Volume 19, Issue 3 , June , 2012 , Pages 555-560 ; 10263098 (ISSN) Safdari, F ; Parsafar, G. A ; Sharif University of Technology
    A general regularity was found based on an effective pair potential of Lennard-Jones LJ (12, 6), for both dense, nonmetallic and nonionic fluids and solids according to which (Z-1) v2 linearly varies with respect to ρ2 for each isotherm, and this equation of state (EoS I) is known as LIR. However, despite the fact that Ne is a simple spherical species, unexpectedly, its solid and liquid phases both show a significant deviation from EoS I. In this work, we have investigated the accuracy of the EoS I for other systems, including quantum light molecules, such as D 2, H 2 and He, in both fluid and solid states at different temperatures. Like Ne, we have noticed that these systems do not well...