Loading...
Search for: density-based-model
0.012 seconds

    Natural gas viscosity estimation using density based models

    , Article Canadian Journal of Chemical Engineering ; Volume 91, Issue 6 , JUL , 2013 , Pages 1183-1189 ; 00084034 (ISSN) Heidaryan, E ; Jarrahian, A ; Sharif University of Technology
    2013
    Abstract
    Accurate value determination of natural gas viscosity plays a key role in its management as it is one of the most important parameters in natural gas engineering calculations. In this study, a comprehensive model is suggested for prediction of natural gas viscosity in a wide range of pressures, temperatures, densities and compositions. The new model can be applicable for gases containing heptane plus and non-hydrocarbon components. It is validated by the 2011 viscosity data from 18 different gas mixtures. Compared to existing similar models and correlations, its results are quite satisfactory  

    Effects of non-isothermal annealing on microstructure and mechanical properties of severely deformed aluminum samples: Modeling and experiment

    , Article Transactions of Nonferrous Metals Society of China (English Edition) ; Volume 29, Issue 6 , 2019 , Pages 1127-1137 ; 10036326 (ISSN) Khodabakhshi, A. R ; Kazeminezhad, M ; Sharif University of Technology
    Nonferrous Metals Society of China  2019
    Abstract
    In order to investigate the evolution of microstructure and flow stress during non-isothermal annealing, aluminum samples were subjected to strain magnitudes of 1, 2 and 3 by performing 2, 4 and 6 passes of multi-directional forging. Then, the samples were non-isothermally annealed up to 150, 200, 250, 300 and 350 °C. The evolution of dislocation density and flow stress was studied via modeling of deformation and annealing stages. It was found that 2, 4 and 6 passes multi-directionally forged samples show thermal stability up to temperatures of 250, 250 and 300 °C, respectively. Modeling results and experimental data were compared and a reasonable agreement was observed. It was noticed that...