Loading...
Search for: density-functional-approach
0.005 seconds

    Investigation of intense femto-second laser ionization and dissociation of methane with time-dependent density-functional approach

    , Article Chemical Physics Letters ; Vol. 604 , 2014 , Pages 60-67 ; ISSN: 00092614 Irani, E ; Sadighi Bonabi, R ; Anvari, A ; Sharif University of Technology
    Abstract
    Three dimensional calculations of electronic dynamics of CH4 in a strong laser field are presented with time-dependent density-functional theory. Time evolution of dipole moment and electron localization function is presented. The dependence of dissociation rate on the laser characters is shown and optimal effective parameters are evaluated. The optimum field leads to 76% dissociation probability for Gaussian envelope and 40 fs (FWHM) at 10 16 W cm-2. The dissociation probability is calculated by optimum convolution of dual short pulses. By combining of field assisted dissociation process and Ehrenfest molecular dynamics, time variation of bond length, velocity and orientation effect are... 

    Tunable bandgap opening in the proposed structure of silicon-doped graphene

    , Article Micro and Nano Letters ; Volume 6, Issue 8 , 2011 , Pages 582-585 ; 17500443 (ISSN) Azadeh, M. S. S ; Kokabi, A ; Hosseini, M ; Fardmanesh, M ; Sharif University of Technology
    2011
    Abstract
    A specific structure of doped graphene with substituted silicon impurity is introduced and ab initio density-functional approach is applied for the energy band structure calculation of the proposed structure. Using the band structure calculation for different silicon sites in the host graphene, the effect of silicon concentration and unit cell geometry on the bandgap of the proposed structure is also investigated. Chemically, silicon-doped graphene results in an energy gap as large as 2eV according to density-functional theory calculations. As the authors will show, in contrast to previous bandgap engineering methods, such structure has significant advantages including wide gap tuning...