Loading...
Search for: density-functional-theory-simulations
0.01 seconds

    Synthesis, first-principle simulation, and application of three-dimensional ceria nanoparticles/graphene nanocomposite for non-enzymatic hydrogen peroxide detection

    , Article Journal of the Electrochemical Society ; Volume 166, Issue 5 , 2019 , Pages H3167-H3174 ; 00134651 (ISSN) Rezvani, E ; Hatamie, A ; Berahman, M ; Simchi, M ; Angizi, S ; Rahmati, R ; Kennedy, J ; Simchi, A ; Sharif University of Technology
    Electrochemical Society Inc  2019
    Abstract
    Owing to the exceptional properties of graphene and the crucial role of substrate on the performance of electrochemical biosensors, several graphene-based hybrid structures have recently emerged, yielding improved selectivity and sensitivity. To date, most of the reported biosensors utilize solution-driven graphene flakes with drawbacks of low conductivity (due to high inter-junction contact resistant) and structural fragility. Herein, we present a conductive three-dimensional CeO2 semiconductor nanoparticles/graphene nanocomposite, as a platform for sensitive detection of hydrogen peroxide, an important molecule in fundamental biological processes. The 3D conductive graphene architecture is... 

    Synthesis, first-principle simulation, and application of three-dimensional ceria nanoparticles/graphene nanocomposite for non-enzymatic hydrogen peroxide detection

    , Article Journal of the Electrochemical Society ; Volume 166, Issue 5 , 2019 , Pages H3167-H3174 ; 00134651 (ISSN) Rezvani, E ; Hatamie, A ; Berahman, M ; Simchi, M ; Angizi, S ; Rahmati, R ; Kennedy, J ; Simchi, A ; Sharif University of Technology
    Electrochemical Society Inc  2019
    Abstract
    Owing to the exceptional properties of graphene and the crucial role of substrate on the performance of electrochemical biosensors, several graphene-based hybrid structures have recently emerged, yielding improved selectivity and sensitivity. To date, most of the reported biosensors utilize solution-driven graphene flakes with drawbacks of low conductivity (due to high inter-junction contact resistant) and structural fragility. Herein, we present a conductive three-dimensional CeO2 semiconductor nanoparticles/graphene nanocomposite, as a platform for sensitive detection of hydrogen peroxide, an important molecule in fundamental biological processes. The 3D conductive graphene architecture is...