Loading...
Search for: depth-information
0.01 seconds

    Walking in streets with minimal sensing

    , Article Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Chengdu ; Volume 8287 LNCS , 2013 , Pages 361-372 ; 03029743 (ISSN); 9783319037790 (ISBN) Tabatabaei, A ; Ghodsi, M ; Sharif University of Technology
    2013
    Abstract
    We consider the problem of walking in an unknown street, starting from a point s, to reach a target t by a robot which has a minimal sensing capability. The goal is to decrease the traversed path as short as possible. The robot cannot infer any geometric properties of the environment such as coordinates, angles or distances. The robot is equipped with a sensor that can only detect the discontinuities in the depth information (gaps) and can locate the target point as soon as it enters in its visibility region. In addition, a pebble as an identifiable point is available to the robot to mark some position of the street. We offer a data structure similar to Gap Navigation Tree to maintain the... 

    Optimal strategy for walking in streets with minimum number of turns for a simple robot

    , Article Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) ; Vol. 8881, issue , 2014 , p. 101-112 Tabatabaei, A ; Ghodsi, M ; Sharif University of Technology
    Abstract
    We consider the problem of walking a simple robot in an unknown street. The robot that cannot infer any geometric properties of the street traverses the environment to reach a target t, starting from a point s. The robot has a minimal sensing capability that can only report the discontinuities in the depth information (gaps), and location of the target point once it enters in its visibility region. Also, the robot can only move towards the gaps while moving along straight lines is cheap, but rotation is expensive for the robot. We maintain the location of some gaps in a tree data structure of constant size. The tree is dynamically updated during the movement. Using the data structure, we... 

    Improved depth resolution and depth-of-field in temporal integral imaging systems through non-uniform and curved time-lens array

    , Article Optics Express ; Volume 28, Issue 5 , 2020 , Pages 6261-6276 Shateri, F ; Behzadfar, S ; Kavehvash, Z ; Sharif University of Technology
    OSA - The Optical Society  2020
    Abstract
    Observing and studying the evolution of rare non-repetitive natural phenomena such as optical rogue waves or dynamic chemical processes in living cells is a crucial necessity for developing science and technologies relating to them. One indispensable technique for investigating these fast evolutions is temporal imaging systems. However, just as conventional spatial imaging systems are incapable of capturing depth information of a three-dimensional scene, typical temporal imaging systems also lack this ability to retrieve depth information—different dispersions in a complex pulse. Therefore, enabling temporal imaging systems to provide these information with great detail would add a new facet...