Loading...
Search for: dielectric-materials
0.004 seconds
Total 44 records

    Variation of the lateral Casimir force between corrugated conductors due to the presence of a dielectric slab

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 86, Issue 2 , 2012 ; 10502947 (ISSN) Sarabadani, J ; Soltani, M ; Zakeri, P ; Jafari, S. A ; Sharif University of Technology
    APS  2012
    Abstract
    We investigate the lateral Casimir interaction between two corrugated conductors when they enclose a dielectric slab. The magnitude of the lateral Casimir force can be changed due to the presence of a dielectric slab between them, and it strongly depends on the thickness (d) and dielectric function of the slab and also on the position of the slab with respect to the conductors. In addition, the distance between the conductors (H) and their corrugation wavelengths play important roles in tuning the lateral Casimir interaction. For fixed d and H, quite interestingly, the magnitude of the lateral Casimir force varies when the position of the slab with respect to conductors changes, and it has a... 

    Reflection analysis of the end-facet dielectric slab waveguide by FDTD method

    , Article ICCEA 2004 - 2004 3rd International Conference on Computational Electromagnetics and its Applications, Beijing, 1 November 2004 through 4 November 2004 ; 2004 , Pages 453-456 ; 0780385624 (ISBN) Vahidpour, M ; Shishegar, A. A ; Sharif University of Technology
    2004
    Abstract
    The Finite Difference Time Domain (FDTD) method has been applied to the analysis of abruptly-ended dielectric waveguides. In these waveguides, incident propagating wave undergoes reflection in an interaction with the end-facet. As a result of the discontinuity, all possible propagating modes may be excited. The constituent propagating modes are extracted from the reflected wave by the least square method. Thus, we present a good estimation of the amplitudes of the reflected modes. This full wave analysis technique is also capable of analyzing any arbitrarily shaped facet. © 2004 IEEE  

    Analysis of nonuniform nonlinear distributed feedback structures by using nonlinear differential transfer matrix

    , Article ICONO 2007: Coherent and Nonlinear Optical Phenomena, Minsk, 28 May 2007 through 1 June 2007 ; Volume 6729 , 2007 ; 0277786X (ISSN) ; 081946886X (ISBN); 9780819468864 (ISBN) Abdollahi, S ; Mehrany, K ; Abediasl, H ; Salehi, J. A ; Rashidian, B ; Sharif University of Technology
    2007
    Abstract
    Differential transfer matrix method is extended to analyze nonuniform nonlinear distributed feedback structures. The input-intensity dependence of the reflectivity and transmissivity of inhomogeneous nonlinear dielectric slabs is investigated for TE polarized and TM polarized incident waves  

    Tight-binding analysis of coupled dielectric waveguide structures

    , Article Fiber and Integrated Optics ; Volume 25, Issue 1 , 2006 , Pages 11-27 ; 01468030 (ISSN) Khalili Amiri, P ; Ranjbaran, M ; Mehrany, K ; Rashidian, B ; Fathololoumi, S ; Sharif University of Technology
    2006
    Abstract
    Based on the mathematical similarity of the Schrödinger and Helmholtz equations, the tight-binding method has been employed for solving optical waveguide problems, in a manner similar to the methods commonly used in solid-state physics. The solutions (TE mode electric field waveforms and propagation constants) of a single dielectric slab waveguide are considered to be known, and tight-binding is used to compute the propagation constants of several multi-waveguide structures. Analytical solutions are derived for linear and circular arrays of adjacent waveguides. The problem of two similar adjacent waveguides is treated in detail for two cases of similar and different propagation constants of... 

    Spatial integration by a dielectric slab and its planar graphene-based counterpart

    , Article Optics Letters ; Volume 42, Issue 10 , 2017 , Pages 1954-1957 ; 01469592 (ISSN) Zangeneh Nejad, F ; Khavasi, A ; Sharif University of Technology
    Abstract
    In this contribution a new approach to perform spatial integration is presented using a dielectric slab. Our approach is indeed based on the fact that the transmission coefficient of a simple dielectric slab at its mode excitation angle matches the Fourier-Green's function of first-order integration. Inspired by the mentioned dielectric-based integrator, we further demonstrate its graphene-based counterpart. The latter is not only reconfigurable but also highly miniaturized in contrast to the previously reported designs [Opt. Commun. 338, 457 (2015)]. Such integrators have the potential to be used in ultrafast analog computation and signal processing. © 2017 Optical Society of America  

    Implementation of a unidirectional-mode ferrite disk antenna using permanent magnets and a two-stage matching network

    , Article Journal of Magnetism and Magnetic Materials ; Volume 521 , 2021 ; 03048853 (ISSN) Bagheri, A. M ; Rejaei, B ; Khavasi, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    We experimentally demonstrate a circularly polarized antenna that utilizes unidirectional surface waves that propagate on the boundary of a small ferrite disk. The ferrite disk is metalized on top and is mounted on a grounded dielectric substrate. The disk is normally biased by a magnetic field that is provided by two permanent magnets below and above the structure. A two-section feeding network is used to feed the antenna. The operation frequency of the antenna can be adjusted by changing the magnitude of the applied magnetic bias. The sense of polarization can be reversed by reversing the direction of the applied bias. © 2020 Elsevier B.V  

    Investigation of high frequency signal propagation characteristics on HV XLPE cables

    , Article 7th International Power Engineering Conference, IPEC2005, Singapore, 29 November 2005 through 2 December 2005 ; Volume 2005 , 2005 ; 9810544693 (ISBN); 9789810544690 (ISBN) O, H. N ; Blackburn, T. R ; Phung, B. T ; Vakilian, M ; Naderi, M.S ; Zhang, H ; Sharif University of Technology
    2005
    Abstract
    The insulation lifetime of power cables is determined by several factors. One of the more important of these is the occurrence of partial discharge (PD) at the dielectric. The ability to detect and locate a PD source is limited by attenuation of the high frequency PD pulses as they propagate through the cable. Therefore it is necessary to understand the high frequency response of such cables. Further, to enable reconstruction of PD signals as emitted a viable high frequency model for simulation is needed. This paper presents results of measurements of PD calibration pulse and high frequency sinusoid propagation in HV XLPE cables. In addition to the tests a cable model was developed using the... 

    Flexible high dielectric polystyrene/ethylene-α-octene copolymer/graphene nanocomposites: Tuning the morphology and dielectric properties by graphene's surface polarity

    , Article Polymers for Advanced Technologies ; Volume 33, Issue 3 , 2022 , Pages 937-951 ; 10427147 (ISSN) Goodarzi, M ; Pircheraghi, G ; Khonakdar, H. A ; Altstadt, V ; Sharif University of Technology
    John Wiley and Sons Ltd  2022
    Abstract
    The current research focuses on suggesting a new potential application of polymeric materials for capacitor applications by focusing on polystyrene (PS)/ethylene-α-octene copolymer (EOC) blends. Polymeric materials have high dielectric strength (≈ 200 for PS), good processability, and flexibility. However, their low dielectric constants make them not suitable for capacitor applications. Therefore, suggesting a method for enhancing their dielectric constant accompanied by low tan δ proposes an excellent substitute for commonly used ceramic dielectrics. The current article investigates the control of the dielectric properties of PS/EOC blends by manipulating the graphene nanoplatelets (GNPs)... 

    SAR computation of a human head exposed to different mobile headsets using FDTD method

    , Article Progress in Electromagnetics Research Symposium, 27 March 2012 through 30 March 2012 ; 2012 , Pages 1131-1134 ; 15599450 (ISSN) ; 9781934142202 (ISBN) Aminzadeh, R ; Ashiri, M ; Abdolali, A ; Sharif University of Technology
    2012
    Abstract
    Many standards are not considering Specific Absorption Rate (SAR) measurements with the use of mobile headsets.In this paper a simulation of mobile headset effects on a human head is done using FDTD-based platform, SEMCAD-X software.We designed two headset models with different case materials to observe their interaction with a Specific Anthropomorphic Mannequin (SAM) phantom as a human head model.Both headset models are installed in the left ear and the human head is rotated by 30±.As headset communicates via Bluetooth at the frequency of 2.4 GHz, we chose a suitable planar inverted F antenna (PIFA) to use with both the headset models.Spatial peak SAR values averaged over 1 g and 10 g for... 

    DC partial discharge characteristics for corona, surface and void discharges

    , Article Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials, 19 July 2015 through 22 July 2015 ; Volume 2015-October , July , 2015 , Pages 260-263 ; 9781479989034 (ISBN) Rahimi, M. R ; Javadinezhad, R ; Vakilian, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Measurement of partial discharges (PDs) current pulses is found to be one of the most efficient methods to evaluate the high voltage electrical equipment insulation condition. Generators, transformers, cables and transmission lines are especially tested for the presence of PDs. In AC, the solution is well known. Phase-resolved method can be used to detect and determine partial discharge activities. Although phase-resolved method works well under AC voltage; due to lack of a cyclic variation in DC voltage and current this cannot be used when studying partial discharges in DC voltage systems. Therefore, other methods are employed to interpret the partial discharge in DC. For this purpose, the... 

    Calculation of effective parameters of high permittivity integrated artificial dielectrics

    , Article IET Microwaves, Antennas and Propagation ; Volume 9, Issue 12 , September , 2015 , Pages 1287-1296 ; 17518725 (ISSN) Barzegar Parizi, S ; Rejaei ; Sharif University of Technology
    Institution of Engineering and Technology  2015
    Abstract
    An analysis is presented of the effective electromagnetic parameters of high-permittivity, anisotropic artificial dielectrics which are built by stacking arrays of metallic elements and conventional dielectric films, with adjacent arrays shifted with respect to each other. The effective parameters of the artificial dielectric are extracted from the scattering coefficients of plane electromagnetic waves which are normally or obliquely incident on a slab of the artificial material with finite thickness. These coefficients are derived from the generalised scattering matrix of a single layer of metallic elements which is computed using the integral equation technique. Both two-dimensional and... 

    Simple One-Step Fabrication of Semiconductive Lateral Heterostructures Using Bipolar Electrodeposition

    , Article Physica Status Solidi - Rapid Research Letters ; 2018 ; 18626254 (ISSN) Jamilpanah, L ; Azizmohseni, S ; Hosseini, S. A ; Hasheminejad, M ; Vesali, N ; Iraji Zad, A ; Pourfath, M ; Mohseni, S. M ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    Unidirectional current flow is at the heart of modern electronics, which has been conceived by making p–n junctions or Schottky barriers between different kinds of materials. Within such elements, however, synthesis of thin film lateral heterostructures has so far remained challenging. Here, a one-step simple synthesis of p-type, n-type, and metallic lateral heterostructures using bipolar electrodeposition (BPE) technique is reported. Molybdenum oxides and sulfides with gradient of oxygen and sulfur are deposited at a metallic substrate. A lateral heterostructure is achieved with electrical properties that change from p- to n-type semiconductor and then to metal by moving in the plane of the... 

    Terahertz quarter wave-plate metasurface polarizer based on arrays of graphene ribbons

    , Article IEEE Photonics Technology Letters ; Volume 31, Issue 12 , 2019 , Pages 931-934 ; 10411135 (ISSN) Tavakol, M. R ; Rahmani, B ; Khavasi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    We propose a novel graphene-dielectric-based metasurface for manipulating the polarization of the incident light in the terahertz regime. The proposed structure comprised two orthogonally oriented periodic array of graphene ribbons (PAGRs) which are separated by a dielectric spacer and deposited on an Au-backed dielectric substrate. Based on the transmission line theory, an equivalent model with excellent accuracy is suggested for the proposed structure. By leveraging the simplicity of the model, we design a three-state quarter wave plate that is able to dynamically switch the polarization of the reflected wave to linear, right-, and left-hand polarizations while keeping the reflected... 

    Air quenching as a reliable technique to obtain colossal dielectric constant with low loss in (In, Nb)-co doped TiO2

    , Article Materials Letters ; Volume 267 , May , 2020 Maleki Shahraki, M ; Mahmoudi, P ; Karimi, A ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    In this research, for the first time, the effect of air quenching on the microstructural and electrical properties of (In, Nb) co-doped TiO2 was investigated. The FE-SEM images showed that the air quenching has no effect on microstructure of co-doped TiO2. However, air quenching affected the electrical properties so that the dielectric constant in the frequency of 1 kHz at room temperature sharply enhanced from 21*103 to 26*104 and the dielectric loss surprisingly decreased from 0.6 to 0.1. This incredible improvement in the dielectric properties is attributed to the electron-pined defect dipoles which has been activated through air quenching. © 2020 Elsevier B.V  

    Micro-plasma actuator mechanisms in interaction with fluid flow for wind energy applications: Physical parameters

    , Article Physics of Fluids ; Volume 32, Issue 7 , 2020 Omidi, J ; Mazaheri, K ; Sharif University of Technology
    American Institute of Physics Inc  2020
    Abstract
    Plasma actuator is a flow control device to improve the aerodynamic performance of wind turbine blades at low airspeeds. One of the most robust numerical models for simulation of plasma actuator interaction with the fluid flow is the electrostatic model. This model is improved recently and is extensively verified by the authors. Due to the high cost of performing experimental optimizations, the optimized geometrical dimensions and materials of a plasma actuator may be sought by this numerical model. The aim of the present study is the aerodynamic enhancement of a DU21 wind turbine blade airfoil in which the effect of geometric parameters and the dielectric material is examined separately.... 

    A dual-band circularly polarized antenna using a metallized ferrite disk

    , Article Journal of Magnetism and Magnetic Materials ; Volume 539 , 2021 ; 03048853 (ISSN) Bagheri, A ; Tavakol, M. R ; Rejaei, B ; Khavasi, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    We have designed and fabricated a dual-band circularly polarized antenna using a normally magnetized ferrite disk. The disk is metallized on top and is mounted on a grounded dielectric substrate. A hole is then punched at the center of the top metallization. The dual band operation of the antenna is due to two separate unidirectional resonances. The field intensity at the lower resonance is largest close to the outer periphery of the disk whereas at the higher resonance the electromagnetic field is concentrates near the punched hole. A two-section feeding network is used to feed the antenna. Central frequencies of the upper and lower bands are 4.62 GHz and 5.97 GHz, respectively.... 

    Aerodynamic enhancement and improving the performance of a six-megawatt dowec wind turbine by micro-plasma actuator

    , Article International Journal of Mechanical Sciences ; Volume 195 , 2021 ; 00207403 (ISSN) Omidi, J ; Mazaheri, K ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    We have investigated the usage of a Dielectric Barrier Discharge (DBD) plasma actuator to improve the aerodynamic performance of an offshore 6 MW wind turbine. By controlling the aerodynamic load combined with pitch angles of 2, 5, and 10 degrees, we studied the plasma actuator effect on the overall harvested power. Actuators were installed in single and tandem configurations in different chord-wise locations to find the optimum design. The improved phenomenological model developed by authors was used in an analysis to simulate the interaction of the electrostatic field, the ionized particles and the fluid flow. A design software was used to estimate the harvested power of the real 3D blade.... 

    An efficient closed-form derivation of spatial green's function for finite dielectric structures using characteristic green's function-rational function fitting method

    , Article IEEE Transactions on Antennas and Propagation ; Vol. 62, issue. 3 , 2014 , pp. 1282-1292 ; ISSN: 0018926X Torabi, A ; Shishegar, A. A ; Faraji-Dana, R ; Sharif University of Technology
    Abstract
    A uniform and closed-form spatial Green's function for finite dielectric structures is derived by using a combination of the characteristic Green's function (CGF) and rational function fitting method (RFFM). Employing the concept of quasi leaky waves, CGF-RFFM represents both of the discrete and continuous spectrum contributions efficiently by using the modified VECTFIT algorithm. The method is examined for 2-D truncated dielectric slab while it can be implemented for 3-D structure straightforwardly. An error of less than 0.2% is achieved compared with the direct numerical integration of the spectral integral. The derived Green's function is exact for separable structures while it is... 

    Simulation of a carbon nanotube field effect transistor with two different gate insulators

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 2332-2340 ; 10263098 (ISSN) Fallah, M ; Faez, R ; Jafari, A. H ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    In this paper, a novel structure for MOSFET like CNTFETs (MOSCNTs) is proposed, combining the advantages of both high and low dielectrics to improve output characteristics. In this structure, the gate dielectric at the drain side is selected from a material with low dielectric constant to form smaller capacitances, while a material with high dielectric constant is selected at the source side to improve on current and reduce leakage current. The new structure is simulated based on the Schrödinger-Poisson formulation. Obtained results show that the proposed configuration has lower off and higher on current in comparison with low-k MOSCNTs. Also, using a two-dimensional model, a wide range of... 

    Effect of varying dielectric constant on relative stability for graphene nanoribbon interconnects

    , Article Applied Mechanics and Materials, 24 July 2012 through 26 July 2012, Kuala Lumpur ; Volume 229-231 , July , 2012 , Pages 201-204 ; 16609336 (ISSN) ; 9783037855102 (ISBN) Farrokhi, M ; Faez, R ; Nasiri, S. H ; Davoodi, B ; Sharif University of Technology
    2012
    Abstract
    The remarkable properties of graphene nanoribbons (GNRs) make them attractive for nano-scale devices applications, especially for transistor and interconnect. Furthermore, for reduction interconnects signal delay, low dielectric constant materials are being introduced to replace conventional dielectrics in next generation IC technologies. With these regards, studding the effect of varying dielectric constant (e{open}r) on relative stability of graphene nanoribbons interconnect is an important viewpoint in performance evaluation of system. In this paper, Nyquist stability analysis based on transmission line modeling (TLM) for graphene nanoribbon interconnects is investigated. In this...