Loading...
Search for: dielectric-permittivities
0.006 seconds

    Micro-plasma actuator mechanisms in interaction with fluid flow for wind energy applications: Physical parameters

    , Article Physics of Fluids ; Volume 32, Issue 7 , 2020 Omidi, J ; Mazaheri, K ; Sharif University of Technology
    American Institute of Physics Inc  2020
    Abstract
    Plasma actuator is a flow control device to improve the aerodynamic performance of wind turbine blades at low airspeeds. One of the most robust numerical models for simulation of plasma actuator interaction with the fluid flow is the electrostatic model. This model is improved recently and is extensively verified by the authors. Due to the high cost of performing experimental optimizations, the optimized geometrical dimensions and materials of a plasma actuator may be sought by this numerical model. The aim of the present study is the aerodynamic enhancement of a DU21 wind turbine blade airfoil in which the effect of geometric parameters and the dielectric material is examined separately.... 

    Analysis of terahertz-induced optical phase modulation in a nonlinear dielectric slab

    , Article Progress In Electromagnetics Research M ; Volume 13 , 2010 , Pages 41-51 ; 19378726 (ISSN) Ghattan, Z ; Izadi, S. A ; Shahabadi, M ; Sharif University of Technology
    2010
    Abstract
    Frequency shift of the spectrum of an incident optical pulse by an intense THz pulse inducing cross-phase modulation (XPM) in a nonlinear dielectric slab is analyzed. The effect is predicted with a high degree of accuracy using the well-known transmission line matrix (TLM) technique. In this research, to model the THz-induced temporal and spatial variation of the dielectric permittivity of the nonlinear dielectric slab, the transmission lines of the TLM method are loaded with open shunt stubs. The parameters of the stubs are modified in accordance with the refractive index variation of the dielectric slab, here ZnTe, induced by the strong THz pulse. The obtained numerical results are... 

    Dielectric properties of nematic liquid crystal doped with Fe3O4 nanoparticles

    , Article Phase Transitions ; 2016 , Pages 1-9 ; 01411594 (ISSN) Maleki, A ; Majles Ara, M. H ; Saboohi, F ; Sharif University of Technology
    Taylor and Francis Ltd 
    Abstract
    The influence of Fe3O4 nanoparticles (NPs) on dielectric properties of planar and homeotropic oriented nematic liquid crystals (NLCs) were studied during the temperature interval of 298–322 °K. It was found that the dielectric permittivity was considerably increased by adding NPs mass percentages. The structural characterization of the synthesized NPs with the scale 14–18 nm has been analyzed by the X-ray diffraction and field-emission scanning electron microscopy results. The obtained dielectric anisotropy ((Formula presented.)) and mean dielectric ((Formula presented.)) have shown an immense increment in the value of 1% and 10% wt. NPs doped NLCs, respectively. These results were assigned... 

    Dielectric properties of nematic liquid crystal doped with Fe3O4 nanoparticles

    , Article Phase Transitions ; Volume 90, Issue 4 , 2017 , Pages 371-379 ; 01411594 (ISSN) Maleki, A ; Majles Ara, M. H ; Saboohi, F ; Sharif University of Technology
    Taylor and Francis Ltd  2017
    Abstract
    The influence of Fe3O4 nanoparticles (NPs) on dielectric properties of planar and homeotropic oriented nematic liquid crystals (NLCs) were studied during the temperature interval of 298–322 °K. It was found that the dielectric permittivity was considerably increased by adding NPs mass percentages. The structural characterization of the synthesized NPs with the scale 14–18 nm has been analyzed by the X-ray diffraction and field-emission scanning electron microscopy results. The obtained dielectric anisotropy (Δε) and mean dielectric (Formula presented.) have shown an immense increment in the value of 1% and 10% wt. NPs doped NLCs, respectively. These results were assigned to the strong...