Loading...
Search for: dies
0.011 seconds
Total 84 records

    Modeling of air venting in pressure die casting process

    , Article Journal of Manufacturing Science and Engineering ; Volume 126, Issue 3 , 2004 , Pages 577-581 ; 10871357 (ISSN) Nouri Borujerdi, A ; Goldak, J. A ; Sharif University of Technology
    American Society of Mechanical Engineers(ASME)  2004
    Abstract
    In this study an analytical model has been developed to describe air pressure and residual air mass variations in pressure die casting for atmospheric venting. During injection of molten metal into a die cavity, air is evacuated from the cavity through vents. In this study, the influences of air velocity and friction factor due to temperature dependent viscosity and vent roughness change have been investigated. The results of the model show that there is a critical area ratio over which a quasi steady state is reached, therefore, the air pressure in the cavity remains constant. In addition, for each area ratio there is a critical/ minimum time ratio below which outlet Mach number is not... 

    A new method for estimating strain in equal channel angular extrusion

    , Article Journal of Materials Processing Technology ; Volume 183, Issue 1 , 2007 , Pages 148-153 ; 09240136 (ISSN) Eivani, A. R ; Karimi Taheri, A ; Sharif University of Technology
    2007
    Abstract
    The present study is concerned with introducing a new configuration of equal channel angular extrusion (ECAE) process nominated as multi-stage ECAE. This die configuration is not a real processing die and is just used to calculate strain in ECAE dies with outer curved corner. A solution is presented for evaluating total strain in those dies consisting of two or more ECAE sub-dies. The solution is extended for calculating strain in frictionless ECAE dies with outer curved corner. A complete agreement is found between calculated and previously published results by other authors. © 2006 Elsevier B.V. All rights reserved  

    Study of the effects of die geometry on deformation in the radial forging process

    , Article Journal of Materials Processing Technology ; Volume 170, Issue 1-2 , 2005 , Pages 156-163 ; 09240136 (ISSN) Ghaei, A ; Movahhedy, M. R ; Karimi Taheri, A ; Sharif University of Technology
    2005
    Abstract
    Radial forging is an open forging process used for reducing the diameters of shafts, tubes, stepped shafts and axels, and creating internal profiles for tubes such as rifling of gun barrels. Usually a mandrel is used inside a tubular workpiece to create internal profile and/or size the internal diameter, but the process can also be performed without a mandrel when workpiece geometry does not allow utilizing it or the internal surface quality is not critical. Moreover, in stepped shafts and tubes, often there is a fillet connecting two different sections. If it is possible to produce that fillet during the forging process, the process could be more cost effective. So, in this paper, four... 

    Numerical modeling of splashing and air entrapment in high-pressure die casting

    , Article International Journal of Advanced Manufacturing Technology ; Volume 39, Issue 3-4 , 2008 , Pages 219-228 ; 02683768 (ISSN) Homayonifar, P ; Babaei, R ; Attar, E ; Shahinfar, S ; Davami, P ; Sharif University of Technology
    2008
    Abstract
    High-pressure die casting (HPDC) is one of the most important manufacturing processes. Air porosity in HPDC parts has many serious effects upon the casting quality. A 3D single-phase code based on the SOLA-VOF algorithm is used for the continuous phase advection during mold filling. In this research, a computational model based on concentration transport equation is used for calculation of air porosity distribution and a mixed VOF-Lagrange algorithm is developed in order to model splashing in HPDC. Finally, Schmid's experimental tests are used to verify the modelling results and the comparison between the experimental data and simulation results has shown a good agreement. © 2007... 

    On the minimization of the exit profile curvature in extrusion through multi-hole dies: a methodology and some verifications

    , Article Meccanica ; Volume 50, Issue 5 , May , 2015 , Pages 1249-1261 ; 00256455 (ISSN) Nazari Onlaghi, S ; Assempour, A ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    In this study, a methodology has been presented for radial positioning of the die holes in multi-hole extrusion of non-symmetric sections. The objective of radial positioning is to minimize exit profile curvature. For this purpose, a two-hole die with non-symmetric T-shaped holes has been investigated. A kinematically admissible velocity field at deformation zone has been developed. The deformation region includes the dead metal zone (DMZ) which is assumed to be linear. The DMZ length was obtained by energy minimization through the upper bound method. To predict the exit profile curvature a deviation function has been suggested. Using the proposed function, the velocity field has been used... 

    Modeling of viscoelastic fluid flow behavior in the circular die using the leonov-like conformational rheological constitutive equations

    , Article Macromolecular Symposia ; Volume 274, Issue 1 , 2008 , Pages 6-10 ; 10221360 (ISSN) Ramazani, A ; Kanvisi, M ; Sharif University of Technology
    2008
    Abstract
    In this paper, the flow behavior of Leonov-Like conformational rheological model, which has root in the generalized Poisson bracket formalism based on the conformation tensor, have been studied in the circular die flow. Prediction of the normal stress differences during the flow of these fluids lets us to follow and calculate relaxation dependent phenomena such as die swell. The model predictions have been compared for the four families of mobility expressions. The Study of the model prediction sensitivity to its mobility term shows that model predictions can cover a wide range of rheological behaviors generally observed for polymer melts and solutions in the circular die flow. Copyright ©... 

    Optimazation of the Locations of Holes in Multihole Extrusion Dies for Minimization of the Exit Curvature Profile

    , M.Sc. Thesis Sharif University of Technology Mohamadypour, Mohamad Hossein (Author) ; Assempour, Ahmad (Supervisor)
    Abstract
    In this work, minimization of the exit profile curvature in multi-hole extrusion die was studied by specifying an appropriate location for exit holes using analytical, finite element and experimental approaches. First by considering linear dead metal zone in flat multi-hole dies, the velocity field constructed. Then based on an objective function, the deviation of the exit profile obtained for any positioning of the exit holes. Additionally, the deviation obtained from theoretical method was verified with the result of the commercially available bulk forming simulation software (Deform 3D v5). Also to verify the result the direct extrusion process was simulated physically by plasticine.... 

    An analytical and experimental study of precision forging of aluminum spur gear

    , Article Steel Research International, 16 September 2012 through 19 September 2012, Krakow ; Volume SPL. ISSUE , September , 2012 , Pages 163-166 ; 16113683 (ISSN) ; 9783514007970 (ISBN) Irani, M ; Taheri, A. K ; Sharif University of Technology
    Wiley-VCH Verlag  2012
    Abstract
    An important aspect of production of gears by precision forging process is the prediction of load required to perform the process and to design the forging die. In this research a new kinematically admissible velocity field is presented to predict the forging load by an upper bound analysis. The analysis considers the shape of tooth profile, number of teeth, and frictional conditions between the die/punch and deforming material. To verify the predicted results the 7075 aluminum alloy billets were forged at temperature of 150 to 250 °C in a precision forging die designed to produce a spur gear of 5 teeth. A good agreement was found between the two sets of results at the filling stage of the... 

    Theoretical and Experimental Investigation of Die Swell Phenomenon for Polymer Nano-Composites

    , M.Sc. Thesis Sharif University of Technology Khodadadi Yazdi, Mohsen (Author) ; Ramezani Saadat Abadi, Ahmad (Supervisor)
    Abstract
    This thesis was conducted both numerically and experimentally. In the experimental investigations aqueous solutions of high molecular weight Carboxymethylcellulose (CMC) was used. The experimental set-up was composed of a glass syringe, and a piston which can easily move through the syringe. Different die with aspect ratio ranging from 5.25 to 28.8 can be attached to the syringe. The syringe then is filled with the CMC solution with different weight fractions. Then using a force exerting on the piston, the solution comes out of the die and exiting velocity was calculated from weight of CMC solution that exit from die in a definite time. High quality photographs were taken from extrudate... 

    SRAM leakage reduction by row/column redundancy under random within-die delay variation

    , Article IEEE Transactions on Very Large Scale Integration (VLSI) Systems ; Volume 18, Issue 12 , 2010 , Pages 1660-1671 ; 10638210 (ISSN) Goudarzi, M ; Ishihara, T ; Sharif University of Technology
    2010
    Abstract
    Share of leakage in total power consumption of static RAM (SRAM) memories is increasing with technology scaling. Reverse body biasing increases threshold voltage (Vth), which exponentially reduces subthreshold leakage, but it increases SRAM access delay. Traditionally, when all cells of an SRAM block used to have almost the same delay, within-die variations are increasingly widening the delay distribution of cells even within a single SRAM block, and hence, most of these cells are substantially faster than the delay set for the entire block. Consequently, after the reverse body biasing and the resulting delay rise, only a small number of cells violate the original delay of the SRAM block; we... 

    Assessment of jajrood river watershed microbial pollution: Sources and fates

    , Article Environmental Engineering and Management Journal ; Volume 9, Issue 3 , 2010 , Pages 385-391 ; 15829596 (ISSN) Maghrebi, M ; Tajrishy, M ; Jamshidi, M ; Sharif University of Technology
    2010
    Abstract
    The Jajrood River watershed is on of the main drinking water resurces of Tehran, the capital city of Iran. In addition it provides many recreational usages. However, a variety of microbial pollutions is commonly perecived in the Jajrood River, among them a high concentration of coliform group bacteria that has caused strong concerns. In this article, different aspects of microbial pollution as well as the main microbial pollution sources in the region are discussed. Coliform group bacterial die-off rates have been evaluated as the key parameters that govern bacterial fate in the watershed and were estimated using both laboratory and field data investigations. The high values of the bacterial... 

    The effect of ECAP die shape on nano-structure of materials

    , Article Computational Materials Science ; Volume 44, Issue 3 , January , 2009 , Pages 962-967 ; 09270256 (ISSN) Hosseini, E ; Kazeminezhad, M ; Sharif University of Technology
    2009
    Abstract
    A general flow line model is developed to investigate the deformation behavior of Cu and Al through Bc route of Equal Channel Angular Pressing process at curved and sharp dies. Considering the Taylor theory, the obtained strain and strain rate from the flow line model and also using a modified version of ETMB model, the evolutions of nano-structure in the processed Cu and Al are predicted. Comparison between the modeling results and experimental data is carried out and a reasonable agreement is achieved. The results show that the deformation in the sharp die occurs in a narrow zone with higher strain rate than that in the curved die. Also, the cell size of the processed Cu is smaller than... 

    An upper bound solution of ECAE process with outer curved corner

    , Article Journal of Materials Processing Technology ; Volume 182, Issue 1-3 , 2007 , Pages 555-563 ; 09240136 (ISSN) Eivani, A. R ; Karimi Taheri, A ; Sharif University of Technology
    2007
    Abstract
    In this research, deformation of material in equal channel angular extrusion (ECAE) process with outer curved corner is analyzed using an upper bound solution. The effects of die angle, friction between the sample and the die walls, and the angle of the outer curved corner, on the extrusion pressure are all considered in the analysis. It is found that the extrusion pressure decreases with increasing both the die angle and the outer curved corner angle and increases with increasing the friction coefficient. Moreover, a good agreement is found between the predicted and experimental results of extrusion pressure relating to two dies of different outer curved corner angles used in ECAE tests of... 

    Optimization of the Positions of Holes in Multi-hole Extrusion Dies with Unsymmetrical Holes for Minimization of the Curvature of the Exiting Profile

    , M.Sc. Thesis Sharif University of Technology Nazari Onlaghi, Sina (Author) ; Assempour, Ahmad (Supervisor)
    Abstract
    In this study, a two-hole die with unsymmetrical T-shape holes has been investigated. At first, a kinematically admissible velocity field in outlet of die has determined. Then, appropriate length of die has calculated by upper bound method. Finally, suitable position of holes has achieved in aspect of minimum pressure and curvature. To calculate curvature of exit profile, a realistic deviation function has been defined. To validation of results, finite element simulation and physical modeling have been used. Analytical, experimental and finite element results have decent agreement to each other  

    The effects of die geometry in tube channel pressing: Severe plastic deformation

    , Article Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications ; Volume 230, Issue 1 , 2016 , Pages 263-272 ; 14644207 (ISSN) Farshidi, MH ; Kazeminezhad, M ; Sharif University of Technology
    SAGE Publications Ltd 
    Abstract
    The effects of die geometry on the deformation behavior of aluminum 6061 alloy tube in a novel severe plastic deformation (SPD) process called tube channel pressing (TCP) were studied using the Abaqus 6.10 software. Using the optimized die geometry, 1 to 3 passes of TCP is imposed not only to validate the simulation results, but also to investigate the performance of TCP as a SPD process. The finite element method (FEM) simulation results show that the moderated plastic strain, the lower inhomogeneity in distribution of plastic strain, and the lower risk of fracture during process can be obtained using the proper die geometry. In addition, the imposed strain is a mixture of shear strain and... 

    A rapid prototyping-based methodology for patient-specific contouring of osteotomy plates

    , Article Rapid Prototyping Journal ; Volume 25, Issue 5 , 2019 , Pages 888-894 ; 13552546 (ISSN) Gomari, B ; Farahmand, F ; Farkhondeh, H ; Sharif University of Technology
    Emerald Group Publishing Ltd  2019
    Abstract
    Purpose: An important challenge of the osteotomy procedures, particularly in the case of large and complex corrections, is the fixation of the osteotomy site. The purpose of this study is to propose a practical and cost-effect methodology for the plate adapting problem of osteotomy surgery. Design/methodology/approach: A novel patient-specific plate contouring methodology, based on rapid prototyping (RP) and multi-point forming (MPF) techniques, was developed and evaluated. In this methodology, a female mold is fabricated by RP, based on the geometry of the osteotomy site and estimation of the plate spring back. The mold is then used to configure a MPF die, which is then used for press... 

    Advanced steel powder for direct metal laser sintering

    , Article European Powder Metallurgy Congress and Exhibition, Euro PM 2005, Prague, 2 October 2005 through 5 October 2005 ; Volume 3 , 2005 , Pages 35-40 ; 9781899072187 (ISBN) Petzoldt, F ; Pohl, H ; Simchi, A ; Alcantara, B ; Sharif University of Technology
    European Powder Metallurgy Association (EPMA)  2005
    Abstract
    Recent advances in material issues for Direct Metal Laser Sintering (DMLS) process are presented. The concept is to decrease the powder particle size with the aim of enhancing the sintering kinetics and improving the surface quality of the produced parts. The outcome is particularly suitable for overcoming existing limitations with the rapid tooling, e.g. manufacturing of mould inserts for injection moulding and die casting, by the DMLS process. The powder composition was adapted near to the conventional P/M steels in order to get identical properties with a favourable price. Such novel powder material provides an opportunity to considerably reduce the product development time for P/M... 

    Modeling on Mechanical Properties of Aluminum of 5xxx Series in Constrained Grooved Pressing Process

    , M.Sc. Thesis Sharif University of Technology Firouzabadi, Siavash (Author) ; Kazeminezhad, Mohsen (Supervisor)
    Abstract
    Al-Mg alloys are used in many industrial fields, thus improvement of their mechanical properties is so important. Expressing mathematical models on the basis of physical and microstructural properties can be useful for this purpose. In this research, in order to study the microstructural evolutions and mechanical properties of the material, a dislocation based model and microstructural parameters such as grains and subgrains during plastic deformation and subsequent annealing are considered. In addition, a modification is used to make the model capable of justify the solute atom and temperature effect simultaneously. This makes the results to be more precise and accurate considering... 

    Minimization of the Exit – Curvature Profile in Extrusion Dies by Optimization of the Die Profile and Application of Die Land

    , M.Sc. Thesis Sharif University of Technology Khalili Meybodi, Ali (Author) ; Assempour, Ahmad (Supervisor)
    Abstract
    One of the most practical deformation processes has been used to produce profiles with a diversity of shapes is forward extrusion. Minimizing the extrusion pressure along with reducing the curvature of the final product have always been the main concerns of the researchers in this area. To achieve the former, researchers have designed nonlinear dies and proposed various equations to determine proper die profile. To accomplish the latter, they have used bearing at the exit section of the extrusion die. The primary object of the current study is to design a proper bearing in order to eliminate the curvature of the final product in extrusion process. The effects of both bearing and die profile... 

    Behaviour of metal powders during cold and warm compaction

    , Article Powder Metallurgy ; Volume 49, Issue 3 , 2006 , Pages 281-287 ; 00325899 (ISSN) Simchi, A ; Veltl, G ; Sharif University of Technology
    2006
    Abstract
    An instrumented die was used to investigate the behaviour of metal powders during cold (ambient temperature) and warm (up to 140°C) compaction. This instrument enables simultaneous measurement of density, die wall friction coefficient, the triaxial stresses acting on the powder during the course of compaction and ejection pressure. Commercial iron, titanium, aluminium, 316L stainless steel (SS) and aluminium-silicon powders were employed for investigation. The results demonstrated the advantages of powder preheating on the compaction behaviour of metal powders concerning green density, dimensional changes, frictional behaviour, ejection characteristics and compactibiiity. However, the...