Loading...
Search for: difference-density
0.011 seconds

    An algorithm for discovering clusters of different densities or shapes in noisy data sets

    , Article Proceedings of the ACM Symposium on Applied Computing ; March , 2013 , Pages 144-149 ; 9781450316569 (ISBN) Khani, F ; Hosseini, M. J ; Abin, A. A ; Beigy, H ; Sharif University of Technology
    2013
    Abstract
    In clustering spatial data, we are given a set of points in Rn and the objective is to find the clusters (representing spatial objects) in the set of points. Finding clusters with different shapes, sizes, and densities in data with noise and potentially outliers is a challenging task. This problem is especially studied in machine learning community and has lots of applications. We present a novel clustering technique, which can solve mentioned issues considerably. In the proposed algorithm, we let the structure of the data set itself find the clusters, this is done by having points actively send and receive feedbacks to each other. The idea of the proposed method is to transform the input... 

    Influence of fines content and type on the small-strain shear modulus of sand

    , Article Scientia Iranica ; Vol. 21, issue. 4 , 2014 , p. 1281-1296 Paydar, N. A ; Ahmadi, M. M ; Sharif University of Technology
    Abstract
    The small-strain shear modulus, Go, is an important fundamental soil property. Although many studies have been conducted on this property for clean sands and pure clays, small-strain behavior for mixtures of sand and fines has been less addressed. This paper presents the results of a comprehensive laboratory study on G0 value of sand containing various amounts of different fines. To this aim, bender elements were integrated into a conventional triaxial apparatus, and shear wave velocity was measured on samples of sand with different amounts of highly-plastic, medium-plastic, low-plastic, or non-plastic fines at different void ratios. Measuring the shear wave velocity and thus... 

    Deciphering the electric field changes in the channel of an open quantum system to detect DNA nucleobases

    , Article Journal of Computational Electronics ; Volume 16, Issue 2 , 2017 , Pages 411-418 ; 15698025 (ISSN) Khadempar, N ; Berahman, M ; Yazdanpanah Goharrizi, A ; Sharif University of Technology
    Abstract
    DNA nucleobases strongly absorbed onto a graphene sheet placed between two gold electrodes in a contact–channel–contact configuration were distinguished. We analyzed the system using the nonequilibrium Green’s function method combined with density functional theory. The changes of the electric field in the middle of the vacuum gap (channel) were investigated. The Mulliken population was deciphered for graphene and the nucleobases. We also extracted the image plane, which was found to lie very close to the position of peak induced density. The projection of the electron difference density and electrostatic difference potential of the nucleobases are also presented. The nucleobases were... 

    Computational study of spin caloritronics in a pristine and defective antimonene nanoribbon

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 120 , 2020 Hashemi, S ; Faez, R ; Darvish, G ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this paper, by using first-principle density functional theory (DFT) combined with non-equilibrium Green's function (NEGF), thermally induced spin current in zigzag and armchair Antimonene Nanoribbon (SbNR) is investigated. Also, we obtain higher spin current in Armchair nanoribbon (ANR) than zigzag nanoribbon (ZNR), because the start energy of transmission for ANR is closer to the Fermi level than ZNR. The results show that the device has a perfect spin Seebeck effect under temperature difference without gate voltage or bias voltage. For the ANR configuration, the competition between spin up holes and spin down electrons leads to negative differential behavior of charge current, which is... 

    Simulation of buoyant bubble motion in viscous flows employing lattice Boltzmann and level set methods

    , Article Scientia Iranica ; Volume 18, Issue 2 B , 2011 , Pages 231-240 ; 10263098 (ISSN) Mehravaran, M ; Hannani, S. K ; Sharif University of Technology
    2011
    Abstract
    Recently, a hybrid Lattice Boltzmann Level Set Method (LBLSM) for two-phase incompressible fluids with large density differences, in cases of negligible or a priori known pressure gradients, has been proposed. In the present work, the mentioned LBLSM method is extended to take into account pressure gradient effects. The lattice Boltzmann method is used for calculating velocities, the interface is captured by the level set function, and the surface tension is replaced by an equivalent body force. The method can be applied to simulate two-phase fluid flows with density ratios up to 1000 and viscosity ratios up to 100. In order to validate the method, the evolution and merging of rising bubbles... 

    Simulation of incompressible two-phase flows with large density differences employing lattice Boltzmann and level set methods

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 198, Issue 2 , December , 2008 , Pages 223-233 ; 00457825 (ISSN) Mehravaran, M ; Hannani, S. K ; Sharif University of Technology
    2008
    Abstract
    A hybrid lattice Boltzmann and level set method (LBLSM) for two-phase immiscible fluids with large density differences is proposed. The lattice Boltzmann method is used for calculating the velocities, the interface is captured by the level set function and the surface tension force is replaced by an equivalent force field. The method can be applied to simulate two-phase fluid flows with the density ratio up to 1000. In case of zero or known pressure gradient the method is completely explicit. In order to validate the method, several examples are solved and the results are in agreement with analytical or experimental results. © 2008 Elsevier B.V. All rights reserved