Loading...
Search for: differentiated-cells
0.007 seconds
Total 24 records

    Directional migration and differentiation of neural stem cells within three-dimensional microenvironments

    , Article Integrative Biology (United Kingdom) ; Volume 7, Issue 3 , Jan , 2015 , Pages 335-344 ; 17579694 (ISSN) Shamloo, A ; Heibatollahi, M ; Mofrad, M. R. K ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Harnessing neural stem cells to repair neuronal damage is a promising potential treatment for neuronal diseases. To enable future therapeutic efficacy, the survival, proliferation, migration and differentiation of neural stem/progenitor cells (NPCs) should be accurately studied and optimized in in vitro platforms before transplanting these cells into the body for treatment purposes. Such studies can determine the appropriate quantities of the biochemical and biomechanical factors needed to control and optimize NPC behavior in vivo. In this study, NPCs were cultured within a microfluidic device while being encapsulated within the collagen matrix. The migration and differentiation of NPCs were... 

    Combinational therapy of lithium and human neural stem cells in rat spinal cord contusion model

    , Article Journal of Cellular Physiology ; Volume 234, Issue 11 , 2019 , Pages 20742-20754 ; 00219541 (ISSN) Mohammadshirazi, A ; Sadrosadat, H ; Jaberi, R ; Zareikheirabadi, M ; Mirsadeghi, S ; Naghdabadi, Z ; Ghaneezabadi, M ; Fardmanesh, M ; Baharvand, H ; Kiani, S ; Sharif University of Technology
    Wiley-Liss Inc  2019
    Abstract
    A large number of treatment approaches have been used for spinal cord injury improvement, a medically incurable disorder, and subsequently stem cell transplantation appears to be a promising strategy. The main objective of this study is to ascertain whether combinational therapy of human neural stem cells (hNSCs) together with lithium chloride improves cell survival, proliferation, and differentiation in a rat spinal contusion model, or not. Contusive spinal cord injury was implemented on Wistar male rats. Experimental groups comprised of: control, hNSCs transplanted, lithium chloride (Li), and hNSCs and lithium chloride (hNSCs + Li). In every experimental group, locomotor activity score and... 

    Magnetoelectric nanocomposite scaffold for high yield differentiation of mesenchymal stem cells to neural-like cells

    , Article Journal of Cellular Physiology ; Volume 234, Issue 8 , 2019 , Pages 13617-13628 ; 00219541 (ISSN) Esmaeili, E ; Soleimani, M ; Ghiass, M. A ; Hatamie, S ; Vakilian, S ; Zomorrod, M. S ; Sadeghzadeh, N ; Vossoughi, M ; Hosseinzadeh, S ; Sharif University of Technology
    Wiley-Liss Inc  2019
    Abstract
    While the differentiation factors have been widely used to differentiate mesenchymal stem cells (MSCs) into various cell types, they can cause harm at the same time. Therefore, it is beneficial to propose methods to differentiate MSCs without factors. Herein, magnetoelectric (ME) nanofibers were synthesized as the scaffold for the growth of MSCs and their differentiation into neural cells without factors. This nanocomposite takes the advantage of the synergies of the magnetostrictive filler, CoFe 2 O 4 nanoparticles (CFO), and piezoelectric polymer, polyvinylidene difluoride (PVDF). Graphene oxide nanosheets were decorated with CFO nanoparticles for a proper dispersion in the polymer through... 

    Microfluidic technologies to engineer mesenchymal stem cell aggregates—applications and benefits

    , Article Biophysical Reviews ; Volume 12, Issue 1 , 2020 , Pages 123-133 Salehi, S. S ; Shamloo, A ; Kazemzadeh Hannani, S. K ; Sharif University of Technology
    Springer  2020
    Abstract
    Three-dimensional cell culture and the forming multicellular aggregates are superior over traditional monolayer approaches due to better mimicking of in vivo conditions and hence functions of a tissue. A considerable amount of attention has been devoted to devising efficient methods for the rapid formation of uniform-sized multicellular aggregates. Microfluidic technology describes a platform of techniques comprising microchannels to manipulate the small number of reagents with unique properties and capabilities suitable for biological studies. The focus of this review is to highlight recent studies of using microfluidics, especially droplet-based types for the formation, culture, and... 

    Development of a genetic algorithm based biomechanical simulation of sagittal lifting tasks

    , Article Biomedical Engineering - Applications, Basis and Communications ; Volume 17, Issue 1 , 2005 , Pages 12-18 ; 10162372 (ISSN) Gündoǧdu, Ö ; Anderson, K. S ; Parnianpour, M ; Sharif University of Technology
    Institute of Biomedical Engineering  2005
    Abstract
    Fibrin sealant and platelet gels are human blood-derived, biodegradable, non toxic, surgical products obtained by mixing a fibrinogen concentrate or a platelet rich plasma with thrombin, respectively. Fibrin sealant is now a well known surgical tool increasingly used to stop or control bleeding, or to provide air and fluid tightness in many surgical situations. Platelet gels are newly developed preparations that are of specific interest because they contain numerous physiological growth factors and cytikines that are released upon the activation of blood platelets by thrombin. These growth factors, including PDGF, TGF-β1, BMP, and VEGF have been shown to stimulate cell growth and... 

    Flash photo stimulation of human neural stem cells on graphene/TiO 2 heterojunction for differentiation into neurons

    , Article Nanoscale ; Volume 5, Issue 21 , 2013 , Pages 10316-10326 ; 20403364 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2013
    Abstract
    For the application of human neural stem cells (hNSCs) in neural regeneration and brain repair, it is necessary to stimulate hNSC differentiation towards neurons rather than glia. Due to the unique properties of graphene in stem cell differentiation, here we introduce reduced graphene oxide (rGO)/TiO2 heterojunction film as a biocompatible flash photo stimulator for effective differentiation of hNSCs into neurons. Using the stimulation, the number of cell nuclei on rGO/TiO2 increased by a factor of ∼1.5, while on GO/TiO2 and TiO2 it increased only ∼48 and 24%, respectively. Moreover, under optimum conditions of flash photo stimulation (10 mW cm-2 flash intensity and 15.0 mM ascorbic acid in... 

    Numerical analysis of a dielectrophoresis field-flow fractionation device for the separation of multiple cell types

    , Article Journal of Separation Science ; Volume 40, Issue 20 , 2017 , Pages 4067-4075 ; 16159306 (ISSN) Shamloo, A ; Kamali, A ; Sharif University of Technology
    Abstract
    In this study, a dielectrophoresis field-flow fractionation device was analyzed using a numerical simulation method and the behaviors of a set of different cells were investigated. By reducing the alternating current frequency of the electrodes from the value used in the original setup configuration and increasing the number of exit channels, total discrimination in cell trajectories and subsequent separation of four cell types were achieved. Cells were differentiated based on their size and dielectric response that are represented in their real part of Clausius–Mossotti factor at different frequencies. A number of novel designs were also proposed based on the original setup configuration.... 

    Controlling differentiation of stem cells for developing personalized organ-on-chip platforms

    , Article Advanced Healthcare Materials ; Volume 7, Issue 2 , 2018 ; 21922640 (ISSN) Geraili, A ; Jafari, P ; Sheikh Hassani, M ; Heidary Araghi, B ; Mohammadi, M. H ; Ghafari, A. M ; Hassanpour Tamrin, S ; Pezeshgi Modarres, H ; Rezaei Kolahchi, A ; Ahadian, S ; Sanati Nezhad, A ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    Organ-on-chip (OOC) platforms have attracted attentions of pharmaceutical companies as powerful tools for screening of existing drugs and development of new drug candidates. OOCs have primarily used human cell lines or primary cells to develop biomimetic tissue models. However, the ability of human stem cells in unlimited self-renewal and differentiation into multiple lineages has made them attractive for OOCs. The microfluidic technology has enabled precise control of stem cell differentiation using soluble factors, biophysical cues, and electromagnetic signals. This study discusses different tissue- and organ-on-chip platforms (i.e., skin, brain, blood–brain barrier, bone marrow, heart,... 

    Multifunctional conductive biomaterials as promising platforms for cardiac tissue engineering

    , Article ACS Biomaterials Science and Engineering ; Volume 7, Issue 1 , 2021 , Pages 55-82 ; 23739878 (ISSN) Mousavi, A ; Vahdat, S ; Baheiraei, N ; Razavi, M ; Norahan, M. H ; Baharvand, H ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Adult cardiomyocytes are terminally differentiated cells that result in minimal intrinsic potential for the heart to self-regenerate. The introduction of novel approaches in cardiac tissue engineering aims to repair damages from cardiovascular diseases. Recently, conductive biomaterials such as carbon- and gold-based nanomaterials, conductive polymers, and ceramics that have outstanding electrical conductivity, acceptable mechanical properties, and promoted cell-cell signaling transduction have attracted attention for use in cardiac tissue engineering. Nevertheless, comprehensive classification of conductive biomaterials from the perspective of cardiac cell function is a subject for... 

    Polymer/metal composite 3D porous bone tissue engineering scaffolds fabricated by additive manufacturing techniques: A review

    , Article Bioprinting ; Volume 25 , 2022 ; 24058866 (ISSN) Mohammadi Zerankeshi, M ; Bakhshi, R ; Alizadeh, R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The employment of tissue engineering scaffolds in the reconstruction of the damaged bone tissues has shown remarkable promise since they significantly facilitate the healing process. Fabrication of highly porous biocompatible scaffolds with sufficient mechanical strength is still challenging. In this regard, polymers have been widely utilized to construct three-dimensional (3D) porous scaffolds due to their excellent processability and biocompatibility. However, insufficient mechanical strength and inappropriate degradation rate of the monophasic polymer scaffolds in the bone regeneration process, as the main challenges, limit their extensive clinical application. The incorporation of... 

    Integrative Utilization of Microenvironments, Biomaterials and Computational Techniques for Advanced Tissue Engineering

    , Article Journal of Biotechnology ; Volume 212 , 2015 , Pages 71-89 ; 01681656 (ISSN) Shamloo, A ; Mohammadaliha, N ; Mohseni, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    This review aims to propose the integrative implementation of microfluidic devices, biomaterials, and computational methods that can lead to a significant progress in tissue engineering and regenerative medicine researches. Simultaneous implementation of multiple techniques can be very helpful in addressing biological processes. Providing controllable biochemical and biomechanical cues within artificial extracellular matrix similar to in vivo conditions is crucial in tissue engineering and regenerative medicine researches. Microfluidic devices provide precise spatial and temporal control over cell microenvironment. Moreover, generation of accurate and controllable spatial and temporal... 

    The different fate of satellite cells on conductive composite electrospun nanofibers with graphene and graphene oxide nanosheets

    , Article Biomedical Materials (Bristol) ; Volume 11, Issue 2 , 2016 ; 17486041 (ISSN) Mahmoudifard, M ; Soleimani, M ; Hatamie, S ; Zamanlui, S ; Ranjbarvan, P ; Vossoughi, M ; Hosseinzadeh, S ; Sharif University of Technology
    Institute of Physics Publishing  2016
    Abstract
    Electrospinning of composite polymer solutions provides fantastic potential to prepare novel nanofibers for use in a variety of applications. The addition of graphene (G) and graphene oxide (GO) nanosheets to bioactive polymers was found to enhance their conductivity and biocompatibility. Composite conductive nanofibers of polyaniline (PANI) and polyacrylonitrile (PAN) with G and GO nanosheets were prepared by an electrospinning process. The fabricated membranes were investigated by physical and chemical examinations including scanning electron microscopy (SEM), Raman spectroscopy, x-ray diffraction (XRD) and tensile assay. The muscle satellite cells enriched by a pre-plating technique were... 

    Study of epithelial differentiation and protein expression of keratinocyte-mesenchyme stem cell co-cultivation on electrospun nylon/B. vulgaris extract composite scaffold

    , Article Materials Science and Engineering C ; Volume 75 , 2017 , Pages 653-662 ; 09284931 (ISSN) Hosseinzadeh, S ; Soleimani, M ; Vossoughi, M ; Ranjbarvan, P ; Hamedi, S ; Zamanlui, S ; Mahmoudifard, M ; Sharif University of Technology
    Abstract
    Employing of the composite electrospun scaffold containing herbal extract in conjugation with co-culturing of cells can open up new window to the design of efficient biomaterials for skin tissue regeneration. Here, we introduce the synergistic effect of composite electrospun nanofibrous scaffold of nylon66 loaded with Beta vulgaris (B. vulgaris) (extract of beet roots, a plants whose widely used in Iranian folk medicine as wound healing medicine) and co-culture of mesenchymal stem-cells (MSCs)-human keratinocyte (H-keratino) differentiation towards epithelial lineage. In vitro biocompatibility was examined through MTT assay and epithelial differentiation checked by real-time PCR and... 

    Fabrication, modeling and optimization of lyophilized advanced platelet rich fibrin in combination with collagen-chitosan as a guided bone regeneration membrane

    , Article International Journal of Biological Macromolecules ; Volume 125 , 2019 , Pages 383-391 ; 01418130 (ISSN) Ansarizadeh, M ; Mashayekhan, S ; Saadatmand, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, lyophilized advanced platelet rich fibrin (A-PRF) was used in combination with collagen-chitosan membrane for the first time to combine advantages of both collagen and A-PRF membranes. Response surface methodology (RSM) was used to design the experimental condition and to correlate the effects of parameters, including chitosan/collagen (chit/col) weight ratio and A-PRF concentration on Young's modulus, mesenchymal stem cell (MSCs) viability and degradation rate of the membranes. Results showed that Young's modulus of the membranes was intensified by increasing chit/col weight ratio and decreasing A-PRF concentration from 3 to 8 MPa. Cell viability of MSCs was improved by both... 

    Oncolytic newcastle disease virus delivered by mesenchymal stem cells-engineered system enhances the therapeutic effects altering tumor microenvironment

    , Article Virology Journal ; Volume 17, Issue 1 , 2020 Keshavarz, M ; Ebrahimzadeh, M. S ; Miri, S. M ; Dianat Moghadam, H ; Ghorbanhosseini, S. S ; Mohebbi, S. R ; Keyvani, H ; Ghaemi, A ; Sharif University of Technology
    BioMed Central Ltd  2020
    Abstract
    Background: Human papillomavirus (HPV)-associated malignancy remain a main cause of cancer in men and women. Cancer immunotherapy has represented great potential as a new promising cancer therapeutic approach. Here, we report Mesenchymal stem cells (MSCs) as a carrier for the delivery of oncolytic Newcastle disease virus (NDV) for the treatment of HPV-associated tumor. Methods: For this purpose, MSCs obtained from the bone marrow of C57BL mice, then cultured and characterized subsequently by the flow cytometry analysis for the presence of cell surface markers. In this study, we sought out to determine the impacts of MSCs loaded with oncolytic NDV on splenic T cell and cytokine immune... 

    MicroRNA profiling reveals important functions of miR-125b and let-7a during human retinal pigment epithelial cell differentiation

    , Article Experimental Eye Research ; Volume 190 , 2020 Shahriari, F ; Satarian, L ; Moradi, S ; Sharifi Zarchi, A ; Günther, S ; Kamal, A ; Totonchi, M ; Mowla, S. J ; Braun, T ; Baharvand, H ; Sharif University of Technology
    Academic Press  2020
    Abstract
    Retinal pigment epithelial (RPE) cells are indispensable for eye organogenesis and vision. To realize the therapeutic potential of in vitro-generated RPE cells for cell-replacement therapy of RPE-related retinopathies, molecular mechanisms of RPE specification and maturation need to be investigated. So far, many attempts have been made to decipher the regulatory networks involved in the differentiation of human pluripotent stem cells into RPE cells. Here, we exploited a highly-efficient RPE differentiation protocol to determine global expression patterns of microRNAs (miRNAs) during human embryonic stem cell (hESC) differentiation into RPE using small RNA sequencing. Our results revealed a... 

    Carbon-based nanocomposite decorated with bioactive glass and CoNi2S4 nanoparticles with potential for bone tissue engineering

    , Article OpenNano ; Volume 8 , 2022 ; 23529520 (ISSN) Bagherzadeh, M ; Aldhaher, A ; Ahmadi, S ; Baheiraei, N ; Rabiee, N ; Sharif University of Technology
    Elsevier Inc  2022
    Abstract
    In this work, for the first time, different forms of nanocomposites based on rGO and MWCNT were prepared in conjoining with the bioactive glass (BioGlass). In the carbonic layers, a highly toxic nanoparticle, CoNi2S4, was intercalated, and the role of this nanoparticle in the alkaline phosphatase activity, relative cell viability on different cell lines, and also the effect on the cell walls and cell morphologies were investigated. From another perspective, the ability of the chemotherapy drug loading to the prepared nanocomposites was investigated, and the use of leaf extracts was thought of as a green method to lower the cytotoxicity and regulate the genotoxicity of the generated... 

    Improving bactericidal performance of implant composite coatings by synergism between Melittin and tetracycline

    , Article Journal of Materials Science: Materials in Medicine ; Volume 33, Issue 6 , 2022 ; 09574530 (ISSN) Zarghami, V ; Ghorbani, M ; Pooshang Bagheri, K ; Shokrgozar, M. A ; Sharif University of Technology
    Springer  2022
    Abstract
    Methicillin resistance Staphylococcus aureus bacteria (MRSA) are serious hazards of bone implants. The present study was aimed to use the potential synergistic effects of Melittin and tetracycline to prevent MRSA associated bone implant infection. Chitosan/bioactive glass nanoparticles/tetracycline composite coatings were deposited on hydrothermally etched titanium substrate. Melittin was then coated on composite coatings by drop casting method. The surfaces were analyzed by FTIR, XRD, and SEM instruments. Tetracycline in coatings revealed multifunctional behaviors include bone regeneration and antibacterial activity. Releasing ALP enzyme from MC3T3 cells increased by tetracycline, so it is... 

    Tissue growth into three-dimensional composite scaffolds with controlled micro-features and nanotopographical surfaces

    , Article Journal of Biomedical Materials Research - Part A ; Volume 101, Issue 10 , 2013 , Pages 2796-2807 ; 15493296 (ISSN) Tamjid, E ; Simchi, A ; Dunlop, J. W. C ; Fratzl, P ; Bagheri, R ; Vossoughi, M ; Sharif University of Technology
    2013
    Abstract
    Controlling topographic features at all length scales is of great importance for the interaction of cells with tissue regenerative materials. We utilized an indirect three-dimensional printing method to fabricate polymeric scaffolds with pre-defined and controlled external and internal architecture that had an interconnected structure with macro- (400-500 μm) and micro- (∼25 μm) porosity. Polycaprolactone (PCL) was used as model system to study the kinetics of tissue growth within porous scaffolds. The surface of the scaffolds was decorated with TiO2 and bioactive glass (BG) nanoparticles to the better match to nanoarchitecture of extracellular matrix (ECM). Micrometric BG particles were... 

    Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 7, Issue 1 , Feb , 2011 , Pages 22-39 ; 15499634 (ISSN) Simchi, A ; Tamjid, E ; Pishbin, F ; Boccaccini, A. R ; Sharif University of Technology
    Abstract
    This review covers the most recent developments of inorganic and organic-inorganic composite coatings for orthopedic implants, providing the interface with living tissue and with potential for drug delivery to combat infections. Conventional systemic delivery of drugs is an inefficient procedure that may cause toxicity and may require a patient's hospitalization for monitoring. Local delivery of antibiotics and other bioactive molecules maximizes their effect where they are required, reduces potential systemic toxicity and increases timeliness and cost efficiency. In addition, local delivery has broad applications in combating infection-related diseases. Polymeric coatings may present some...