Loading...
Search for: diffusive-dynamics
0.005 seconds

    Short term fluctuations of wind and solar power systems

    , Article New Journal of Physics ; Volume 18, Issue 6 , 2016 ; 13672630 (ISSN) Anvari, M ; Lohmann, G ; Wächter, M ; Milan, P ; Lorenz, E ; Heinemann, D ; Rahimi Tabar, M. R ; Peinke, J ; Sharif University of Technology
    Institute of Physics Publishing 
    Abstract
    Wind and solar power are known to be highly influenced by weather events and may ramp up or down abruptly. Such events in the power production influence not only the availability of energy, but also the stability of the entire power grid. By analysing significant amounts of data from several regions around the world with resolutions of seconds to minutes, we provide strong evidence that renewable wind and solar sources exhibit multiple types of variability and nonlinearity in the time scale of seconds and characterise their stochastic properties. In contrast to previous findings, we show that only the jumpy characteristic of renewable sources decreases when increasing the spatial size over... 

    3D modeling of reaction-diffusion dynamics in an electrokinetic Y-shaped microreactor

    , Article Sensors and Actuators, B: Chemical ; Volume 235 , 2016 , Pages 343-355 ; 09254005 (ISSN) Helisaz, H ; Saidi, M. H ; Sadeghi, A ; Sharif University of Technology
    Elsevier  2016
    Abstract
    We perform a 3D numerical modeling of reaction-diffusion dynamics in a Y-shaped microreactor, considering a fully developed combined electroosmotic and pressure-driven flow. The governing equations, based on a second-order irreversible reaction, are solved invoking a finite-volume approach for a non-uniform grid system. We demonstrate that the reaction is highly position dependent: more production is observed adjacent to the horizontal walls for a favorable pressure gradient, whereas both the wall and centerline are the regions of highest production when a back pressure is applied. We further show that, to achieve the maximum production rate, the EDL should be thick enough, the pressure... 

    Unified model of brain tissue microstructure dynamically binds diffusion and osmosis with extracellular space geometry

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 94, Issue 3 , 2016 ; 15393755 (ISSN) Yousefnezhad, M ; Fotouhi, M ; Vejdani, K ; Kamali Zare, P ; Sharif University of Technology
    American Physical Society  2016
    Abstract
    We present a universal model of brain tissue microstructure that dynamically links osmosis and diffusion with geometrical parameters of brain extracellular space (ECS). Our model robustly describes and predicts the nonlinear time dependency of tortuosity (λ=D/D∗) changes with very high precision in various media with uniform and nonuniform osmolarity distribution, as demonstrated by previously published experimental data (D = free diffusion coefficient, D∗ = effective diffusion coefficient). To construct this model, we first developed a multiscale technique for computationally effective modeling of osmolarity in the brain tissue. Osmolarity differences across cell membranes lead to changes... 

    Electrical conductivity of methylimidazolium hexafluorophosphate ionic liquid in the presence of colloidal silver nano particles with different sizes and temperatures

    , Article Journal of Physical Chemistry C ; Volume 121, Issue 39 , 2017 ; 19327447 (ISSN) Taherkhani, F ; Kiani, S ; Sharif University of Technology
    American Chemical Society  2017
    Abstract
    Colloidal nanoparticle could be used for recognition location of tumors and cancer tissue. A simulation of molecular dynamic for colloidal silver nanoparticles (Ag NPs) based on density functional theory (DFT) potential parametrization with different sizes in 1-ethyl-3-methylimidazolium hexafluorophosphate [EMim][PF6] ionic liquid was performed. Then, using Green Kubo formalism, diffusion coefficient for Ag NPs in IL and in the gas phase was calculated. We also calculated diffusion coefficients of anions and cations for pure IL and IL in the presence of different sizes of Ag NPs at different temperatures. The findings showed that the diffusion coefficient of anions and cations increases in... 

    Molecular simulation of protein dynamics in nanopores. II. Diffusion

    , Article Journal of Chemical Physics ; Volume 130, Issue 8 , 2009 ; 00219606 (ISSN) Javidpour, L ; Tabar, M.R.R ; Sahimi, M ; Sharif University of Technology
    2009
    Abstract
    A novel combination of discontinuous molecular dynamics and the Langevin equation, together with an intermediate-resolution model of proteins, is used to carry out long (several microsecond) simulations in order to study transport of proteins in nanopores. We simulated single-domain proteins with the α-helical native structure. Both attractive and repulsive interaction potentials between the proteins and the pores' walls are considered. The diffusivity D of the proteins is computed not only under the bulk conditions but also as a function of their "length" (the number of the amino-acid groups), temperature T, pore size, and interaction potentials with the walls. Compared with the...