Loading...
Search for: digital-time-domain-simulations
0.006 seconds

    Power flow control of a matrix converter based micro-turbine distributed generation system

    , Article 2006 IEEE Power Engineering Society General Meeting, PES, Montreal, QC, 18 June 2006 through 22 June 2006 ; 2006 ; 1424404932 (ISBN); 9781424404933 (ISBN) Nikkhajoei, H ; Karimi Ghartemani, M ; Sharif University of Technology
    IEEE Computer Society  2006
    Abstract
    This paper presents a power flow controller for a matrix converter as the power electronic interface between a high-speed micro-turbine generator and a utility distribution system. The matrix converter converts the high-frequency of a micro-turbine generator to a conventional frequency of the utility system, based on a novel switching strategy. The controller regulates magnitude and phase-angle of the converter output voltage to accommodate real and reactive power flow requirements of the utility system. Performance of the matrix converter based microturbine generation system including the power flow controller is evaluated based on digital time-domain simulation studies in the PSCAD/EMTDC... 

    Control of a microgrid with unbalanced loads using virtual negative-sequence impedance loop

    , Article PEDSTC 2014 - 5th Annual International Power Electronics, Drive Systems and Technologies Conference ; 2014 , p. 78-83 Hamzeh, M ; Karimi, H ; Mokhtari, H ; Mahseredjian, J ; Sharif University of Technology
    Abstract
    This paper presents an effective control strategy for autonomous operation of a multi-bus medium voltage (MV) microgrid (MG) consisting of several dispatchable distributed generation (DG) units. Each electronically-coupled DG unit supplies the loads which can be unbalanced due to the inclusion of single-phase loads. The proportional resonance (PR) and droop controllers are, respectively, used to regulate the load voltage and share the average powers among the DG units. The virtual negative-sequence impedance controller (VNSIC) is proposed to effectively compensate the negative-sequence currents of the unbalanced loads. Moreover, the VNSIC minimizes the negative-sequence currents in the MV... 

    A new decentralized voltage control scheme of an autonomous microgrid under unbalanced and nonlinear load conditions

    , Article Proceedings of the IEEE International Conference on Industrial Technology ; February , 2013 , Pages 1812-1817 ; 9781467345699 (ISBN) Paridari, K ; Hamzeh, M ; Emamian, S ; Karimi, H ; Bakhshai, A ; Sharif University of Technology
    2013
    Abstract
    This paper presents an effective voltage control strategy for the autonomous operation of a medium voltage (MV) microgrid under nonlinear and unbalanced load conditions. The main objectives of this strategy are to effectively compensate the harmonic and negative-sequence currents of nonlinear and unbalanced loads using distributed generation (DG) units. The proposed control strategy consists of a multi-proportional resonant controller (MPRC) whose parameters are assigned with particle swarm optimization (PSO) algorithm. The optimization function is defined to minimize the tracking error at the specific harmonics considering the stability limitations. In this paper the performance of the... 

    Automatic droop control for a low voltage DC microgrid

    , Article IET Generation, Transmission and Distribution ; Volume 10, Issue 1 , 2016 , Pages 41-47 ; 17518687 (ISSN) Khorsandi, A ; Ashourloo, M ; Mokhtari, H ; Iravani, R ; Sharif University of Technology
    Institution of Engineering and Technology 
    Abstract
    A DC microgrid (DC-MG) provides an effective mean to integrate various sources, energy storage units and loads at a common dc-side. The droop-based, in the context of a decentralised control, has been widely used for the control of the DC-MG. However, the conventional droop control cannot achieve both accurate current sharing and desired voltage regulation. This study proposes a new adaptive control method for DC-MG applications which satisfies both accurate current sharing and acceptable voltage regulation depending on the loading condition. At light load conditions where the output currents of the DG units are well below the maximum limits, the accuracy of the current sharing process is... 

    Robust tuning of transient droop gains based on kharitonov's stability theorem in droopcontrolled microgrids

    , Article IET Generation, Transmission and Distribution ; Volume 12, Issue 14 , 2018 , Pages 3495-3501 ; 17518687 (ISSN) Mahdian Dehkordi, N ; Sadati, N ; Hamzeh, M ; Sharif University of Technology
    Abstract
    This study addresses the robust stability analysis for an islanded microgrid with droop-controlled inverter-based distributed generators (DGs). Owing to large load changes, microgrid structure reconfiguration, and higher-power demands, the low-frequency (LF) dominant modes of a microgrid stir toward unstable zone and make the system more oscillatory or even unstable. In this study, a robust two-degree-of-freedom (2DOF) decentralised droop controller, which is the combination of the conventional droop with a robust transient droop function, is utilised for each inverter-based DG unit. Unlike conventional tuning of 2DOF droop controllers, a new design procedure is proposed to robustly... 

    Design and implementation of a single phase grid-connected PV inverter with a new active damping strategy

    , Article PEDSTC 2014 - 5th Annual International Power Electronics, Drive Systems and Technologies Conference ; Feb , 2014 , pp. 72-77 Hamzeh, M ; Karimi, Y ; Asadi, E ; Oraee, H ; Sharif University of Technology
    Abstract
    This paper presents an effective current injection method for a single phase grid-connected PV inverter with LCL filter. The main objective of the proposed control strategy is to compensate the resonance effect of the LCL filter. In the proposed control strategy, a resonance compensator is augmented to the conventional proportional resonance (PR) controller to attenuate current oscillations in resonance frequency of LCL filter. The proposed strategy robustly regulates the output current of grid connected inverter in various grid impedances and provides a high quality current injection capability for the PV inverter in harmonic polluted condition of the grid voltage. The performance of the... 

    A new power management control strategy for a MV microgrid with both synchronous generator and inverter-interfaced distributed energy resources

    , Article IEEE International Symposium on Industrial Electronics ; 1- 4 June , 2014 , pp. 2529-2534 ; ISBN: 978-147992399-1 Zangeneh, M ; Hamzeh, M ; Mokhtari, H ; Karimi, H ; Sharif University of Technology
    Abstract
    Control strategies of a microgrid which includes both synchronous generators and converter-based distribution generation (DG) units must be designed such that effective operation of the microgrid is achieved. The main objective of this paper is to develop a high performance control strategy for an islanded medium voltage (MV) microgrid consisting of inverter and non-inverter interfaced DG units. A new control method for the synchronous generator in an islanded microgrid is proposed based on a virtual droop scheme. The proposed strategy can effectively manage the real and reactive powers of the microgrid among the inverter and non-inverter based DG units. The steady state and dynamic... 

    A decentralized self-adjusting control strategy for reactive power management in an islanded multi-bus MV microgrid

    , Article Canadian Journal of Electrical and Computer Engineering ; Volume 36, Issue 1 , 2013 , Pages 18-25 ; 08408688 (ISSN) Hamzeh, M ; Mokhtari, H ; Karimi, H ; Sharif University of Technology
    2013
    Abstract
    This paper presents a decentralized self-adjusting reactive power controller for the autonomous operation of a multi-bus medium voltage (MV) microgrid. The main objective of the proposed control strategy of each distributed generation (DG) unit is to compensate the reactive power of its local loads and to share the reactive power of the nonlocal loads among itself and other DG units. The proposed control strategy includes an improved droop controller whose parameters are adjusted according to the reactive power of the local loads. A virtual inductive impedance loop is augmented to the voltage controller to enhance the steady state and transient responses of the proposed reactive power... 

    A control method for integrating hybrid power source into an islanded microgrid through CHB multilevel inverter

    , Article PEDSTC 2013 - 4th Annual International Power Electronics, Drive Systems and Technologies Conference ; 2013 , Pages 495-500 ; 9781467344845 (ISBN) Ghazanfari, A ; Hamzeh, M ; Mokhtari, H ; Sharif University of Technology
    2013
    Abstract
    This paper proposes a control strategy for an islanded microgrid to effectively coordinate hybrid power source (HPS) units and to robustly control individual interfaced inverters under unbalanced and nonlinear load conditions. Cascaded H-bridge (CHB) multilevel inverters are flexibly deployed in order to enhance the power quality and redundancy. The HPS employs fuel cell (FC) as the main and supercapacitors (SC) as complementary power sources. Fast transient response; high performance; and high power density are the main characteristics of the proposed HPS system. The presented control strategy consists of a power management strategy for the HPS units and a voltage control strategy for the... 

    Active power management of multihybrid fuel cell/supercapacitor power conversion system in a medium voltage microgrid

    , Article IEEE Transactions on Smart Grid ; Volume 3, Issue 4 , 2012 , Pages 1903-1910 ; 19493053 (ISSN) Ghazanfari, A ; Hamzeh, M ; Mokhtari, H ; Karimi, H ; Sharif University of Technology
    2012
    Abstract
    This paper proposes a hierarchical active power management strategy for a medium voltage (MV) islanded microgrid including a multihybrid power conversion system (MHPCS). To guarantee excellent power management, a modular power conversion system is realized by parallel connection of small MHPCS units. The hybrid system includes fuel cells (FC) as main and supercapacitors (SC) as complementary power sources. The SC energy storage compensates the slow transient response of the FC stack and supports the FC to meet the grid power demand. The proposed control strategy of the MHPCS comprises three control loops; dc-link voltage controller, power management controller, and load current sharing... 

    A new control strategy for a multi-bus MV microgrid under unbalanced conditions

    , Article IEEE Transactions on Power Systems ; Volume 27, Issue 4 , 2012 , Pages 2225-2232 ; 08858950 (ISSN) Hamzeh, M ; Karimi, H ; Mokhtari, H ; Sharif University of Technology
    2012
    Abstract
    This paper proposes a new control strategy for the islanded operation of a multi-bus medium voltage (MV) microgrid. The microgrid consists of several dispatchable electronically-coupled distributed generation (DG) units. Each DG unit supplies a local load which can be unbalanced due to the inclusion of single-phase loads. The proposed control strategy of each DG comprises a proportional resonance (PR) controller with an adjustable resonance frequency, a droop control strategy, and a negative-sequence impedance controller (NSIC). The PR and droop controllers are, respectively, used to regulate the load voltage and share the average power components among the DG units. The NSIC is used to...