Loading...
Search for: dimensionless-number
0.004 seconds
Total 21 records

    Introducing a dimensionless number as tank selector in hybrid solar thermal energy storage systems

    , Article Evolutionary Ecology ; Volume 25, Issue 4 , 2011 , Pages 871-876 ; 02697653 (ISSN) Mohamadi, Z. M ; Zohoor, H ; Sharif University of Technology
    2011
    Abstract
    Using hybrid energy storage system is a method for increasing the storage capability of solar thermal energy. If multiple energy storage devices with complementary performance characteristics are used together, the resulting system will be a 'Hybrid Energy Storage System'. In other words, a Hybrid Energy Storage System (HESS) has several media available for storage at any time. In this way, increase in storable energy is obtained without increasing collectors' area. When there are more than one storage mediums, the system should be able to choose the best medium for storing energy according to the conditions. In the previous works, an optimizer program was used to find the proper medium... 

    Scaling equations for oil/gas recovery from fractured porous media by counter-current spontaneous imbibition: From development to application

    , Article Energy and Fuels ; Vol. 27, issue. 8 , July , 2013 , p. 4662-4676 ; ISSN: 08870624 Mirzaei-Paiaman, A ; Masihi, M ; Sharif University of Technology
    Abstract
    Spontaneous imbibition, the capillary-driven process of displacing the nonwetting phase by the wetting phase in porous media, is of great importance in oil/gas recovery from matrix blocks of fractured reservoirs. The question of how properly scaling up the recovery by counter-current spontaneous imbibition has been the subject of extensive research over decades, and numerous scaling equations have been proposed. As a convention, the scaling equations are usually defined analytically by relating the early time squared recovery to squared pore volume. We show this convention does not apply to common scaling practices and, if used, causes nontrivial scatter in the scaling plots. We explain that... 

    Modeling and CFD simulation of a mixed-convection flow of regular fluids and nanofluids in vertical porous and regular channels

    , Article Heat Transfer - Asian Research ; Vol. 43, issue. 3 , May , 2014 , pp. 243-269 ; ISSN: 1523-1496 Hashemi Amrei, S. M. H ; Dehkordi, A. M ; Sharif University of Technology
    Abstract
    In this article, the problem of combined forced and free convection in vertical porous and regular channels for both regular fluids and nanofluids has been solved using the CFD technique in the entrance regions of momentum and heat transfer taking into account the influences of viscous heating and inertial force. In this regard, various types of viscous dissipation models reported in the literature such as the Darcy model, the power of the drag force model, and the clear fluid-compatible model were applied. In the case of nanofluid flow, both the Brownian and thermophoresis molecular transfer mechanisms were considered. The dimensionless distributions of velocity, temperature, and the volume... 

    Scaling equations for oil/gas recovery from fractured porous media by counter-current spontaneous imbibition: From development to application

    , Article Energy and Fuels ; Volume 27, Issue 8 , 2013 , Pages 4662-4676 ; 08870624 (ISSN) Mirzaei Paiaman, A ; Masihi, M ; Sharif University of Technology
    2013
    Abstract
    Spontaneous imbibition, the capillary-driven process of displacing the nonwetting phase by the wetting phase in porous media, is of great importance in oil/gas recovery from matrix blocks of fractured reservoirs. The question of how properly scaling up the recovery by counter-current spontaneous imbibition has been the subject of extensive research over decades, and numerous scaling equations have been proposed. As a convention, the scaling equations are usually defined analytically by relating the early time squared recovery to squared pore volume. We show this convention does not apply to common scaling practices and, if used, causes nontrivial scatter in the scaling plots. We explain that... 

    Wettability effects in gas gravity-Assisted flow as related to displacement instability

    , Article Special Topics and Reviews in Porous Media ; Volume 1, Issue 1 , 2010 , Pages 39-47 ; 21514798 (ISSN) Rostami, B ; Kharrat, R ; Alipour Tabrizy, V ; Khosravi, M ; Ghotbi, C ; Sharif University of Technology
    Abstract
    The drainage of oil under gravity forces is an efficient method because it can farther reduce the remaining oil saturation to below that obtained after water flooding. This paper describes a series of visual experiments under forced gas invasion with special attention to the effects of wettability. From oil production history and image analysis, we examine a threshold criterion for displacement stability that is consistent with the results of gradient percolation theory. The effect of the destabilized front velocity on oil recovery and residual saturation is investigated for both wettability conditions. Different recovery rates occur with different fluid morphologies, which depend on the... 

    Experimental study of liquid jets injected in crossflow

    , Article Experimental Thermal and Fluid Science ; Volume 115 , 2020 Olyaei, G ; Kebriaee, A ; Sharif University of Technology
    Elsevier Inc  2020
    Abstract
    In this paper, we studied the behavior of liquid sheet and jet injection into a low-speed crossflow. Characteristics of primary breakup in a liquid sheet and jet are investigated for circular and rectangular orifices. Effect of dimensionless numbers on primary breakup regimes including jet trajectory, length, height, breakup, and spray characteristics are surveyed by the shadowgraphy technique at ambient pressure and temperature. Tests were performed in the range of 0.8–16.57 for the Weber number, 5–250 for the momentum flux ratio, and 380–1850 for the Reynolds number. This comprehensive study on rectangular jets in crossflow leads to introduce the transition regions of the primary... 

    Mechanistic Studies of Improved Oil Recovery under Forced Gravity Drainage GAGD Process

    , Ph.D. Dissertation Sharif University of Technology Rostami, Behzad (Author) ; Kharrat, Riyaz (Supervisor) ; Ghotbi, Cyrus (Supervisor) ; Pooladi Darvish, Mehran (Co-Advisor)
    Abstract
    Gas-oil displacement, when stabilized by gravity forces leads to high displacement efficiency, as manifested in high recovery factor associated with gas-cap drive and gravity drainage. The main objective of this research is improved understanding of drainage behavior and changes in flow properties when the importance of viscous, gravity and capillary forces varies. The influence of interplaying between controlling forces on relative permeabilities is also studied. Another objective of this work is to study effect of wettability on recovery under forced gravity drainage. To study drainage behavior under various dominant driving/resistive forces, a number of forced gravity drainage experiments... 

    Analysis of transient heat conduction in a hollow cylinder using Duhamel theorem

    , Article International Journal of Thermophysics ; Volume 34, Issue 2 , 2013 , Pages 350-365 ; 0195928X (ISSN) Fazeli, H ; Abdous, M. A ; Karabi, H ; Moallemi, N ; Esmaeili, M ; Sharif University of Technology
    2013
    Abstract
    The objective of this paper is to derive the mathematical model of two-dimensional heat conduction at the inner and outer surfaces of a hollow cylinder which are subjected to a time-dependent periodic boundary condition. The substance is assumed to be homogenous and isotropic with time-independent thermal properties. Duhamel's theorem is used to solve the problem for the periodic boundary condition which is decomposed by Fourier series. In this paper, the effects of the temperature oscillation frequency on the boundaries, the variation of the hollow cylinder thickness, the length of the cylinder, the thermophysical properties at ambient conditions, and the cylinder involved in some... 

    Evaluation of flapping wing propulsion based on a new experimentally validated aeroelastic model

    , Article Scientia Iranica ; Volume 19, Issue 3 , 2012 , Pages 472-482 ; 10263098 (ISSN) Pourtakdoust, S. H ; Aliabadi, S. K ; Sharif University of Technology
    2012
    Abstract
    To evaluate the propulsion system capabilities of a Flapping Micro Air Vehicle (FMAV), a new aeroelastic model of a typical flexible FMAV is developed, utilizing the Euler-Bernoulli torsion beam and quasi steady aerodynamic model. The new model accounts for all existing complex interactions between the mass, inertia, elastic properties, aerodynamic loading, flapping amplitude and frequency of the FMAV, as well as the effects of several geometric and design parameters. To validate the proposed theoretical model, a typical FMAV, as well as an instrumented test stand for the online measurement of forces, flapping angle and power consumption, has been constructed. The experimental results are... 

    Introducing a dimensionless number as tank selector in hybrid solar thermal energy storage systems

    , Article Journal of Mechanical Science and Technology ; Volume 25, Issue 4 , 2011 , Pages 871-876 ; 1738494X (ISSN) Mohamadi, Z. M ; Zohoor, H ; Sharif University of Technology
    Abstract
    Using hybrid energy storage system is a method for increasing the storage capability of solar thermal energy. If multiple energy storage devices with complementary performance characteristics are used together, the resulting system will be a 'Hybrid Energy Storage System'. In other words, a Hybrid Energy Storage System (HESS) has several media available for storage at any time. In this way, increase in storable energy is obtained without increasing collectors' area. When there are more than one storage mediums, the system should be able to choose the best medium for storing energy according to the conditions. In the previous works, an optimizer program was used to find the proper medium... 

    Relationship between wetting properties and macroscale hydrodynamics during forced gravity drainage and secondary waterflood

    , Article Petroleum Science and Technology ; Volume 28, Issue 8 , 2010 , Pages 804-815 ; 10916466 (ISSN) Rostami, B ; Kharrat, R ; Ghotbi, C ; Alipour Tabrizy, V ; Sharif University of Technology
    Abstract
    In order to relate the wetting properties at the pore scale to the macroscale prevailing forces, a series of experiments was performed in vertical porous media under forced gas invasion at various wettability conditions with partially spreading oil. To describe the dynamics of oil recovery in a three-phase flow condition, the downward gas flood experiments were continued by water injection from the bottom. Experimental results obtained in situations where the magnitudes of viscous, capillary, and gravity forces are comparable. We study the transition from flow configurations where the interface is stable with respect to viscous instability to flow configurations where viscous fingering... 

    Bubble dynamics in rotating flow under an accelerating field

    , Article Physics of Fluids ; Volume 30, Issue 8 , 2018 ; 10706631 (ISSN) Maneshian, B ; Javadi, K ; Taeibi Rahni, M ; Sharif University of Technology
    American Institute of Physics Inc  2018
    Abstract
    Three-dimensional bubble dynamics in rotating flow under an accelerating field such as a centrifugal one is studied in this work. We employ the lattice Boltzmann method in two phase flows to simulate bubble dynamics for different Bond and Morton numbers of 0.1, 1, 10, and 100 and 0.001, 0.01, 0.1, 1, 10, and 100, respectively. Another dimensionless number named as dimensionless force, F∗, which is the ratio of buoyancy force to centripetal force is defined to explain the dynamics of the bubbles. In this work, we consider 5×10-7≤F∗≤5. The results show that bubbles in rotating flows have different kinds of motions such as spinning, rotating, and translating. Based on the ratios of the forces... 

    Mass transfer coefficients of extracting Mo (VI) and W (VI) in a stirred tank by solvent extraction using mixture of Cyanex272 and D2EHPA

    , Article Separation Science and Technology (Philadelphia) ; 2019 ; 01496395 (ISSN) Shakib, B ; Torab Mostaedi, M ; Outokesh, M ; Asadollahzadeh, M ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    In this study, the mass transfer evaluation of an agitated liquid-liquid system for the extraction of molybdenum and tungsten from aqueous sulfate solution was investigated. It was found from batch experiments for separation of molybdenum from tungsten that the initial aqueous pH, Cyanex272 and D2EHPA concentration, contact time, dispersed phase volume fraction and impeller speed were optimized at 1.3, 0.07 M, 0.29 M, 15 min, 0.09 and 280 rpm, respectively. The results indicate that a suitable composition for stripping is 1.5 M NH4OH and 0.6 M NH4F. Furthermore, a modified correlation based on dimensionless numbers was derived for the prediction of continuous phase mass transfer in the... 

    Mass transfer coefficients of extracting Mo (VI) and W (VI) in a stirred tank by solvent extraction using mixture of Cyanex272 and D2EHPA

    , Article Separation Science and Technology (Philadelphia) ; Volume 55, Issue 17 , 2020 , Pages 3140-3150 Shakib, B ; Torab Mostaedi, M ; Outokesh, M ; Asadollahzadeh, M ; Sharif University of Technology
    Bellwether Publishing, Ltd  2020
    Abstract
    In this study, the mass transfer evaluation of an agitated liquid-liquid system for the extraction of molybdenum and tungsten from aqueous sulfate solution was investigated. It was found from batch experiments for separation of molybdenum from tungsten that the initial aqueous pH, Cyanex272 and D2EHPA concentration, contact time, dispersed phase volume fraction and impeller speed were optimized at 1.3, 0.07 M, 0.29 M, 15 min, 0.09 and 280 rpm, respectively. The results indicate that a suitable composition for stripping is 1.5 M NH4OH and 0.6 M NH4F. Furthermore, a modified correlation based on dimensionless numbers was derived for the prediction of continuous phase mass transfer in the... 

    A novel force-based approach for designing armor blocks of high-crested breakwaters

    , Article Scientia Iranica ; Vol. 21, issue. 3 , 2014 , pp. 534-547 ; ISSN: 10263098 Pak, A ; Sarfaraz, M ; Sharif University of Technology
    Abstract
    Rubble-mound breakwaters are common marine structures that provide a safe area for human coastal activities. The stability of these structures against sea-waves requires their seaward slope to be protected by an armor layer consisting of natural rock or concrete units. To provide a safe breakwater, it is reasonable to establish a relation between the exerted wave loads and the stability of the armor units. However, up to now, the empirical design equations, derived from model tests, relate wave parameters to armor weight, and keeps the effect of wave loads in a black box. In this paper, a new approach, based on numerically-derived wave loads on the armor, is presented to evaluate the... 

    Laminar premixed V-shaped flame response to velocity and equivalence ratio perturbations: Investigation on kinematic response of flame

    , Article Scientia Iranica ; Volume 18, Issue 4 B , 2011 , Pages 913-922 ; 10263098 (ISSN) Riazi, R ; Farshchi, M ; Sharif University of Technology
    2011
    Abstract
    The response of a rod-stabilized, V-shaped, premixed flame to upstream velocity and equivalence ratio perturbations was characterized as a function of excitation frequency. The response of the flame to equivalence ratio perturbations was calculated, assuming that the heat release response is controlled by contributions from three disturbances. These disturbances include flame speed, heat of reaction and flame area. Using an analytical model, based on linearization of the front tracking equation for inclined flames, the kinematics of a V-flame anchored on a central obstacle was investigated and its response was compared with that of a conical flame. The results suggest that the phase response... 

    Local scour at open-channel junctions

    , Article Journal of Hydraulic Research ; Volume 48, Issue 4 , Sep , 2010 , Pages 538-542 ; 00221686 (ISSN) Borghei, S. M ; Jabbari Sahebari, A ; Sharif University of Technology
    2010
    Abstract
    High bed-shear stress resulting from secondary flows and velocity increase at a channel junction cause local erosion and deposition in natural rivers and earth-lined channels. Herein, the scour patterns at the junction of two loose bed channels were studied under clear-water conditions. The main dimensionless variables are the angle between the two approach flow branches, the discharge and width ratios of the tributary to the downstream channel branches, and the ratio of the mean downstream velocity to the threshold velocity. The results indicate that the position of the maximum scour depth temporally moves to the outer wall and upstream to the main channel, as affected by the dimensionless... 

    Identification of fluid dynamics in forced gravity drainage using dimensionless groups

    , Article Transport in Porous Media ; Volume 83, Issue 3 , July , 2010 , Pages 725-740 ; 01693913 (ISSN) Rostami, B ; Kharrat, R ; Pooladi Darvish, M ; Ghotbi, C ; Sharif University of Technology
    2010
    Abstract
    A number of forced gravity drainage experiments have been conducted using a wide range of the physical and operational parameters, wherein the type, length, and permeability of the porous medium as well as oil viscosity and injection rate were varied. Results indicate that an increase in the Bond number has a positive effect on oil recovery whereas the capillary number has an opposite effect. These trends were observed over a two-order of magnitude change in the value of the dimensionless groups. Furthermore, it was found that use of each number alone is insufficient to obtain a satisfactory correlation with recovery. A combined dimensionless group is proposed, which combines the effect of... 

    Effect of gas impurity on the convective dissolution of CO2 in porous media

    , Article Energy ; Volume 199 , May , 2020 Mahmoodpour, S ; Amooie, M. A ; Rostami, B ; Bahrami, F ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Growing needs for energy and the essential role of fossil fuels in energy market require attempts such as carbon dioxide (CO2) sequestration in saline aquifers to stabilize and mitigate atmospheric carbon concentrations. The possibility of co-injection of impurities along with CO2 allows for the direct disposal of flue gas and hence a significant reduction in the cost of CO2 sequestration projects by eliminating the separation process. In this study, the results of series of novel experiments in a high-pressure visual porous cell are reported, which allow for visually and quantitatively examining the dynamics of convective dissolution in brine-saturated porous media in the presence of an... 

    Experimental investigation of matrix wettability effects on water imbibition in fractured artificial porous media

    , Article Journal of Petroleum Science and Engineering ; Volume 86-87 , 2012 , Pages 165-171 ; 09204105 (ISSN) Rezaveisi, M ; Ayatollahi, S ; Rostami, B ; Sharif University of Technology
    Abstract
    Spontaneous water imbibition into the matrix blocks is known as the main mechanism for increased oil recovery from naturally fractured oil reservoirs. The rate of oil recovery and its ultimate value is mostly affected by wettability of the rocks and their pore structure. Oil viscosity also greatly influences the rate of oil recovery. A novel experimental model was utilized to study the imbibition mechanism under different wettability conditions. Matrix blocks made from different grain types and size distributions of glass beads were saturated with two different types of synthetic oil, to mimic the oil-saturated matrixes. The wetting characteristic of the models used in this study were...