Loading...
Search for: discrete-fracture-network
0.004 seconds

    A sensitivity study of FILTERSIM algorithm when applied to DFN modeling

    , Article Journal of Petroleum Exploration and Production Technology ; Vol. 4, issue. 2 , June , 2014 , p. 153-174 ; ISSN: 21900558 Ahmadi, R ; Masihi, M ; Rasaei, M. R ; Eskandaridalvand, K ; Shahalipour, R ; Sharif University of Technology
    Abstract
    Realistic description of fractured reservoirs demands primarily for a comprehensive understanding of fracture networks and their geometry including various individual fracture parameters as well as network connectivities. Newly developed multiple-point geostatistical simulation methods like SIMPAT and FILTERSIM are able to model connectivity and complexity of fracture networks more effectively than traditional variogrambased methods. This approach is therefore adopted to be used in this paper. Among the multiple-point statistics algorithms, FILTERSIM has the priority of less computational effort than does SIMPAT by applying filters and modern dimensionality reduction techniques to the... 

    Enhancing acid fracture design in carbonate formation using a dynamic up-scaling procedure to convert discrete fracture network to dual continuum

    , Article Petroleum Science and Technology ; Volume 40, Issue 18 , 2022 , Pages 2284-2304 ; 10916466 (ISSN) Kasiri Bidhendi, M. R ; Khorsand Movaghar, M. R ; Humand, M ; Bazargan, M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    For a low-permeability carbonate formation, the acid fracture process is simulated through coupling a commercial acid fracture simulator (GOHFER) to a finite volume reservoir simulator (IMEX). Unlike LGR (Local grid refinement) approach that suffers from severe convergence problems, a dynamic up-scaling procedure is employed to convert the discrete fracture network (DFN) model into a dual continuum model for our simulation. In this paper, multiple simulations are used to optimize the acid fracture schedule parameters, such as fluid volume, flow rate, perforation location, number of injection steps, and acid type, in order to maximize the effective fracture length. For four points perforation... 

    Fracture characterizing and modeling of a porous fractured carbonate reservoir

    , Article Society of Petroleum Engineers - SPE/EAGE Reservoir Characterization and Simulation Conference 2009 - Overcoming Modeling Challenges to Optimize Recovery, 19 October 2009 through 21 October 2009 ; Volume 1 , 2009 , Pages 303-319 ; 9781615677443 (ISBN) Dashti, R ; Bagheri, M. B ; Ulhaq, S ; Sharif University of Technology
    Abstract
    Anisotropy and heterogeneity in reservoir properties introduce challenges during the development of hydrocarbon reservoirs in naturally fractured reservoirs. In reservoir simulations, grid-block properties are frequently assigned to obtain reasonable history matches. Even then, accuracy with regard to some aspects of the performance such as water or gas cuts, breakthrough times, and sweep efficiencies may be inadequate. In some cases, this could be caused by the presence of substantial flow through natural fractures. In this work the fracture characterization and modeling was performed in a highly fractured carbonate reservoir in SW Iran. It was observed that reservoir simulation based on... 

    A physically-based three dimensional fracture network modeling technique

    , Article Scientia Iranica ; Volume 19, Issue 3 , 2012 , Pages 594-604 ; 10263098 (ISSN) Masihi, M ; Sobhani, M ; Al Ajmi, A. M ; Al Wahaibi, Y. M ; Khamis Al Wahaibi, T ; Sharif University of Technology
    Abstract
    In poorly developed fractured rocks, the contribution of individual fracture on rock conductivity should be considered. However, due to the lack of data, a deterministic approach cannot be used. The conventional way to model discrete fractures is to use a Poisson process, with prescribed distribution, for fracture size and orientation. Recently, a stochastic approach, based on the idea that the elastic energy due to fractures follows a Boltzmann distribution, has been used to generate realizations of correlated fractures in two dimensions. The elastic energy function has been derived by applying the appropriate physical laws in an elastic medium. The resulting energy function has been used... 

    Uncertainty analysis for seawater intrusion in fractured coastal aquifers: Effects of fracture location, aperture, density and hydrodynamic parameters

    , Article Journal of Hydrology ; Volume 571 , 2019 , Pages 159-177 ; 00221694 (ISSN) Koohbor, B ; Fahs, M ; Ataie Ashtiani, B ; Belfort, B ; Simmons, C. T ; Younes, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study we use polynomial chaos expansion (PCE) to perform uncertainty analysis for seawater intrusion (SWI) in fractured coastal aquifers (FCAs) which is simulated using the coupled discrete fracture network (DFN) and variable-density flow (VDF) models. The DFN-VDF model requires detailed discontinuous analysis of the fractures. In real field applications, these characteristics are usually uncertain which may have a major effect on the predictive capability of the model. Thus, we perform global sensitivity analysis (GSA) to provide a preliminary assessment on how these uncertainties can affect the model outputs. As our conceptual model, we consider fractured configurations of the...