Loading...
Search for: discrete-time-control-systems
0.007 seconds

    Model reference adaptive control in fractional order systems using discrete-time approximation methods

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 25, Issue 1-3 , August , 2015 , Pages 27-40 ; 10075704 (ISSN) Abedini, M ; Nojoumian, M. A ; Salarieh, H ; Meghdari, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this paper, model reference control of a fractional order system has been discussed. In order to control the fractional order plant, discrete-time approximation methods have been applied. Plant and reference model are discretized by Grünwald-Letnikov definition of the fractional order derivative using "Short Memory Principle". Unknown parameters of the fractional order system are appeared in the discrete time approximate model as combinations of parameters of the main system. The discrete time MRAC via RLS identification is modified to estimate the parameters and control the fractional order plant. Numerical results show the effectiveness of the proposed method of model reference adaptive... 

    On the complexity and dynamical properties of mixed logical dynamical systems via an automaton-based realization of discrete-time hybrid automaton

    , Article International Journal of Robust and Nonlinear Control ; Volume 28, Issue 16 , 2018 , Pages 4713-4746 ; 10498923 (ISSN) Hejri, M ; Giua, A ; Mokhtari, H ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    Modeling of hybrid systems using mixed logical dynamical (MLD) systems is an art. The MLD framework often introduces numerous constraints and auxiliary binary and continuous variables, which, in turn, increase the computational complexity of the optimization problems. This paper presents an automaton-based realization for discrete-time hybrid automaton (DHA) with both controlled and uncontrolled switching phenomena by which it is attempted to develop efficient translation techniques to MLD systems and reduce the total number of decision variables in the MLD model. Based on this DHA model, a modified version of MLD systems, which is called extended MLD (EMLD) is formally defined and... 

    Robust fault tolerant explicit model predictive control

    , Article Automatica ; Volume 97 , 2018 , Pages 248-253 ; 00051098 (ISSN) Sheikhbahaei, R ; Alasty, A ; Vossoughi, G ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, a new algorithm for explicit model predictive control of linear discrete-time systems subject to linear constraints, disturbances, uncertainties, and actuator faults is developed. The algorithm is based on dynamic programming, constraint rearrangement, multi-parametric programming, and a solution combination procedure. First of all, the dynamic programming is used to recast the problem as a multi-stage optimization problem. Afterwards, the constraints are rearranged in an innovative manner to take into account the worst admissible situation of unknown bounded disturbances, uncertainties, and actuator faults. Then, the explicit solution of the reformulated optimization problem... 

    Robust composite nonlinear feedback control for spacecraft rendezvous systems under parameter uncertainty, external disturbance, and input saturation

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; 2018 ; 09544100 (ISSN) Namdari, H ; Allahverdizadeh, F ; Sharifi, A ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    This paper presents a new robust composite nonlinear feedback control law for accurate, smooth, and fast regulation in the presence of parameter uncertainties, external disturbances, and input saturation for a class of spacecraft rendezvous systems. The novel proposed method consists of the original composite nonlinear feedback part for good transient performance plus a nonlinear disturbance rejection part for reducing the steady-state error stemming from variable disturbances and simultaneously producing feasible control input. The nonlinear disturbance rejection relies on sliding-mode observer for disturbance estimation. Closed-loop system stability has been proved with the Lyapunov... 

    A numerical method to approximate optimal production and maintenance plan in a flexible manufacturing system

    , Article Applied Mathematics and Computation ; Volume 170, Issue 2 , 2005 , Pages 924-940 ; 00963003 (ISSN) Kianfar, F ; Sharif University of Technology
    2005
    Abstract
    The simultaneous planning of the production and the maintenance in a flexible manufacturing system is considered in this paper. The manufacturing system is composed of one machine that produces a single product. There is a preventive maintenance plan to reduce the failure rate of the machine. This paper is different from the previous researches in this area in two separate ways. First, the failure rate of the machine is supposed to be a function of its age. Second, we assume that the demand of the manufacturing product is time dependent and its rate depends on the level of advertisement on that product. The objective is to maximize the expected discounted total profit of the firm over an... 

    Stability and performance preserving controller order reduction via Youla parameterization and lmis

    , Article 2003 10th IEEE International Conference on Electronics, Circuits and Systems, ICECS2003, Sharjah, 14 December 2003 through 17 December 2003 ; Volume 2 , 2003 , Pages 663-666 ; 0780381637 (ISBN); 9780780381636 (ISBN) Amirgar, R ; Sadati, N ; Sharif University of Technology
    2003
    Abstract
    This paper develops a stability and performance preserving controller order reduction method for linear time-invariant continuous-time single-input, single-output systems. In this method, the error between the complementary sensitivity functions of the nominal closed-loop system and closed-loop system using the reduced-order controller is converted to a frequency-weighted error between the Youla parameters of the full-order and reduced-order controllers and then the H∞norm of this error, subject to a set of linear matrix inequality constraints, is minimized. The main ideas of order reduction and stability preservation are contained in the constraints of the optimization problem. However,... 

    Intelligent control of chaos using linear feedback controller and neural network identifier

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 17, Issue 12 , 2012 , Pages 4731-4739 ; 10075704 (ISSN) Sadeghpour, M ; Khodabakhsh, M ; Salarieh, H ; Sharif University of Technology
    2012
    Abstract
    A method for controlling chaos when the mathematical model of the system is unknown is presented in this paper. The controller is designed by the pole placement algorithm which provides a linear feedback control method. For calculating the feedback gain, a neural network is used for identification of the system from which the Jacobian of the system in its fixed point can be approximated. The weights of the neural network are adjusted online by the gradient descent algorithm in which the difference between the system output and the network output is considered as the error to be decreased. The method is applied on both discrete-time and continuous-time systems. For continuous-time systems,... 

    Output feedback adaptive control of a class of nonlinear discrete-time systems with unknown control directions and preceded by hysteresis

    , Article International Journal of Control ; Volume 88, Issue 11 , Jun , 2015 , Pages 2412-2422 ; 00207179 (ISSN) Hosseini Ardali, S. M ; Ghaderi, A ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    This paper considers the output feedback adaptive controller design problem for a class of discrete-time nonlinear systems in output feedback form with unknown control directions and preceded by unknown hysteresis. The problem of lacking in a-priori knowledge on the control directions and unknown hysteresis are solved by using the discrete Nussbaum gain and Prandtl-Ishlinskii model, respectively. The system is transformed into the form of a nonlinear auto regressive moving average (NARMA) model to construct an output feedback control. To overcome the noncausal problem in the control design, future output prediction laws and parameter update laws with the dead-zone technique are constructed... 

    Model predictive control of non-linear discrete time systems: A linear matrix inequality approach

    , Article IET Control Theory and Applications ; Volume 4, Issue 10 , October , 2010 , Pages 1922-1932 ; 17518644 (ISSN) Poursafar, N ; Taghirad, H. D ; Haeri, M ; Sharif University of Technology
    2010
    Abstract
    Using a non-linear model in model predictive control (MPC) changes the control problem from a convex quadratic programme to a non-convex non-linear problem, which is much more challenging to solve. In this study, we introduce an MPC algorithm for non-linear discrete-time systems. The systems are composed of a linear constant part perturbed by an additive state-dependent non-linear term. The control objective is to design a state-feedback control law that minimises an infinite horizon cost function within the framework of linear matrix inequalities. In particular, it is shown that the solution of the optimisation problem can stabilise the non-linear plants. Three extensions, namely,... 

    General Characterization Method and a Fast Load-Charge-Preserving Switching Procedure for the Stepwise Adiabatic Circuits

    , Article IEEE Transactions on Circuits and Systems I: Regular Papers ; Volume 63, Issue 1 , 2016 , Pages 80-90 ; 15498328 (ISSN) Khorami, A ; Sharifkhani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    An analytical method is presented to characterize stepwise adiabatic circuits (SACs). In this method, the SACs are modeled as a discrete time system. Unlike previous methods, the stability is verified for arbitrary load capacitor ratios. Moreover, this method presents analytical derivations to offer an area/energy efficient design methodology. MATLAB simulations, post-layout simulations in the CMOS 0.18 μm technology, silicon measurements, and measurements based on discrete components confirm the precision of the analytical derivations. Using the proposed design methodology, a capacitive tank has been designed which reduces the energy consumption by 20% while the total size of the tank... 

    Finite time-Lyapunov based approach for robust adaptive control of wind-induced oscillations in power transmission lines

    , Article Journal of Sound and Vibration ; Volume 371 , 2016 , Pages 19-34 ; 0022460X (ISSN) Ghabraei, S ; Moradi, H ; Vossoughi, G ; Sharif University of Technology
    Academic Press  2016
    Abstract
    Large amplitude oscillation of the power transmission lines, which is also known as galloping phenomenon, has hazardous consequences such as short circuiting and failure of transmission line. In this article, to suppress the undesirable vibrations of the transmission lines, first the governing equations of transmission line are derived via mode summation technique. Then, due to the occurrence of large amplitude vibrations, nonlinear quadratic and cubic terms are included in the derived linear equations. To suppress the vibrations, arbitrary number of the piezoelectric actuators is assumed to exert the actuation forces. Afterwards, a Lyapunov based approach is proposed for the robust adaptive... 

    Finite time control of robotic manipulators with position output feedback

    , Article International Journal of Robust and Nonlinear Control ; Volume 27, Issue 16 , 2017 , Pages 2982-2999 ; 10498923 (ISSN) Abooee, A ; Moravej Khorasani, M ; Haeri, M ; Sharif University of Technology
    Abstract
    This paper deals with the robust finite time tracking of desired trajectories for a wide group of robotic manipulators in spite of unknown disturbances, uncertainties, and saturations of actuators while only manipulator's positions are available and its velocities are not measurable physically. A new form of chattering-free second order fast nonsingular terminal sliding mode control scheme is introduced to design input torques for fulfilling the determined tracking objective in the adjustable total finite settling time. The proposed control algorithm is incorporated with two nonlinear observers to estimate disturbances and velocities of joints within finite settling times. The global finite... 

    Model predictive control of nonlinear discrete time systems with guaranteed stability

    , Article Asian Journal of Control ; 2018 ; 15618625 (ISSN) Shamaghdari, S ; Haeri, M ; Sharif University of Technology
    Wiley-Blackwell  2018
    Abstract
    This paper presents the design of a new robust model predictive control algorithm for nonlinear systems represented by a linear model with unstructured uncertainty. The linear model is obtained by linearizing the nonlinear system at an operating point and the difference between the nonlinear and linear model is considered as a Lipschitz nonlinear function. The controller is designed for the linear model, which fulfills the stabilization condition for the nonlinear term. Unlike previous studies that have not considered a valid Lipschitz matrix of nonlinear term in the design process, we propose an algorithm in this paper in which it is considered. Therefore, the closed loop stability of the... 

    Chaos control in delayed phase space constructed by the Takens embedding theory

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 54 , 2018 , Pages 453-465 ; 10075704 (ISSN) Hajiloo, R ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this paper, the problem of chaos control in discrete-time chaotic systems with unknown governing equations and limited measurable states is investigated. Using the time-series of only one measurable state, an algorithm is proposed to stabilize unstable fixed points. The approach consists of three steps: first, using Takens embedding theory, a delayed phase space preserving the topological characteristics of the unknown system is reconstructed. Second, a dynamic model is identified by recursive least squares method to estimate the time-series data in the delayed phase space. Finally, based on the reconstructed model, an appropriate linear delayed feedback controller is obtained for... 

    Estimation and stability over AWGN channel in the presence of fading, noisy feedback channel and different sample rates

    , Article Systems and Control Letters ; Volume 123 , 2019 , Pages 75-84 ; 01676911 (ISSN) ; https://www.sciencedirect.com/science/article/abs/pii/S0167691118301993 Sanjaroon, V ; Farhadi, A ; Khalaj, B. H ; Motahari, A. S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    This paper is concerned with estimation and stability of control systems over communication links subject to limited capacity, power constraint, fading, noisy feedback, and different transmission rate rather than system sampling rate. A key issue addressed in this paper is that in the presence of noisy feedback associated with channel, which models transmission of finite number of bits over such links as is the case in most practical scenarios, the well-known eigenvalues rate condition is still a tight bound for stability. Based on an information theoretic analysis, necessary conditions are derived for stability of discrete-time linear control systems via the distant controller in the mean... 

    Model predictive control of nonlinear discrete time systems with guaranteed stability

    , Article Asian Journal of Control ; Volume 22, Issue 2 , 2020 , Pages 657-666 Shamaghdari, S ; Haeri, M ; Sharif University of Technology
    Wiley-Blackwell  2020
    Abstract
    This paper presents the design of a new robust model predictive control algorithm for nonlinear systems represented by a linear model with unstructured uncertainty. The linear model is obtained by linearizing the nonlinear system at an operating point and the difference between the nonlinear and linear model is considered as a Lipschitz nonlinear function. The controller is designed for the linear model, which fulfills the stabilization condition for the nonlinear term. Unlike previous studies that have not considered a valid Lipschitz matrix of nonlinear term in the design process, we propose an algorithm in this paper in which it is considered. Therefore, the closed loop stability of the... 

    Non-Minimality of the realizations and possessing state matrices with integer elements in linear discrete-time controllers

    , Article IEEE Transactions on Automatic Control ; 2022 , Pages 1-6 ; 00189286 (ISSN) Tavazoei, M. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    It is known that discrete-time controllers, whose state matrices have no non-integer element, are beneficial in homomorphic based encrypted control systems. Nevertheless, it has been recently shown that possessing state matrices with integer elements usually yields unstable discrete-time controllers. In this note, we investigate the problem from a non-minimality perspective. It is shown that non-minimal realizations, in comparison to minimal ones, can theoretically provide a wider framework to obtain controllers having state matrices with integer elements. However, in the case of dealing with BIBO stable controllers, this framework cannot preserve internal stability. But, benefiting from the... 

    Estimation and stability over AWGN channel in the presence of fading, noisy feedback channel and different sample rates

    , Article Systems and Control Letters ; Volume 123 , 2019 , Pages 75-84 ; 01676911 (ISSN) Sanjaroon, V ; Farhadi, A ; Khalaj, B. H ; Seyed Motahari, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    This paper is concerned with estimation and stability of control systems over communication links subject to limited capacity, power constraint, fading, noisy feedback, and different transmission rate rather than system sampling rate. A key issue addressed in this paper is that in the presence of noisy feedback associated with channel, which models transmission of finite number of bits over such links as is the case in most practical scenarios, the well-known eigenvalues rate condition is still a tight bound for stability. Based on an information theoretic analysis, necessary conditions are derived for stability of discrete-time linear control systems via the distant controller in the mean...