Loading...
Search for: distributed-generation-systems
0.007 seconds

    Power flow control of a matrix converter based micro-turbine distributed generation system

    , Article 2006 IEEE Power Engineering Society General Meeting, PES, Montreal, QC, 18 June 2006 through 22 June 2006 ; 2006 ; 1424404932 (ISBN); 9781424404933 (ISBN) Nikkhajoei, H ; Karimi Ghartemani, M ; Sharif University of Technology
    IEEE Computer Society  2006
    Abstract
    This paper presents a power flow controller for a matrix converter as the power electronic interface between a high-speed micro-turbine generator and a utility distribution system. The matrix converter converts the high-frequency of a micro-turbine generator to a conventional frequency of the utility system, based on a novel switching strategy. The controller regulates magnitude and phase-angle of the converter output voltage to accommodate real and reactive power flow requirements of the utility system. Performance of the matrix converter based microturbine generation system including the power flow controller is evaluated based on digital time-domain simulation studies in the PSCAD/EMTDC... 

    Multivariable control strategy for autonomous operation of a converter-based distributed generation system

    , Article 2011 IEEE/PES Power Systems Conference and Exposition, PSCE 2011, 20 March 2011 through 23 March 2011, Phoenix, AZ ; March , 2011 , Page(s): 1 - 8 ; 9781612847870 (ISBN) Nejati, A ; Nobakhti, A ; Karimi, H ; Sharif University of Technology
    2011
    Abstract
    This paper presents a control strategy for the autonomous (islanded) operation of a distributed generation (DG) unit. The DG unit supplies a balanced load through a voitage-sourced converter (VSC). To maintain the autonomous operation in the islanded mode, the DG unit should provide its dedicated load with a sinusoidal voltage with a constant magnitude and a constant frequency. The dynamic model of the islanded DG system is represented by a set of nonlinear equations. Since the objective is to regulate voltage and frequency of the islanded DG about their rated values, the nonlinear model is linearized about the operating point. The obtained linearized model represents a multivariable LTI... 

    A fast and cost-effective control of a three-phase stand-alone inverter

    , Article 8th Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2017, 14 February 2017 through 16 February 2017 ; 2017 , Pages 67-72 ; 9781509057665 (ISBN) Mazloum, N ; Keikha, O ; Yaghoubi, M ; Tahami, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    This paper proposes a straightforward control method for voltage control of a three-phase transformer-based inverter in uninterruptible power supplies or distributed generation systems. The approach offers a dual-loop design consisting inner current control loop and outer voltage loop. Sliding mode current controller provides desired bandwidth for voltage controller which consists of a state feedback term for stabilization and resonant term for harmonic damping. The proposed scheme provides fast dynamic response and low total harmonic distortion even for high power inverters with the limitations of switching frequency and LC filter components. Experimental studies for 2KVA linear and... 

    Optimal tuning of linear controllers for power electronics/power systems applications

    , Article Electric Power Systems Research ; Volume 81, Issue 12 , 2011 , Pages 2188-2197 ; 03787796 (ISSN) Hasanzadeh, A ; Edrington, C. S ; Mokhtari, H ; Sharif University of Technology
    2011
    Abstract
    This paper presents a new method for tuning various linear controllers such as Proportional-Integral (PI), Proportional-Integral-Derivative (PID) and Proportional-Resonant (PR) structures which are frequently used in power electronics and power system applications. The linear controllers maintain a general structure defined by the Internal Model Principle (IMP) of control theory. The proposed method in this paper is twofold. The first perspective uses the well-known concept of the Linear Quadratic Regulator (LQR) to address the problem as a regulation problem. The Q matrix of the LQR design is then finely adjusted in order to assure the desired transient response for the system. The second...