Loading...
Search for: distribution-patterns
0.006 seconds

    Ductility reduction factor of MDOF shear-building structures

    , Article Journal of Earthquake Engineering ; Volume 5, Issue 3 , 2001 , Pages 425-440 ; 13632469 (ISSN) Moghaddam, H ; Mohammadi, R. K ; Sharif University of Technology
    2001
    Abstract
    In this paper, the results of recent studies on inelastic seismic response of MDOF shear-building structures are presented. In the last few decades, the concept of response modification factor R has been introduced and developed to account for inelastic nonlinear behaviour of structures under earthquakes. In this paper, an attempt has been made to adjust and extend this concept through introducing a modifying factor RT. This factor is used for dynamic analysis of MDOF structures, including the calculation of inelastic response spectra. Sensitivity analysis was carried out to identify the parameters that have influence on RT. It has been demonstratec that RT is predominantly a function of... 

    Ductility reduction factor of mdof shear-building structures

    , Article Journal of Earthquake Engineering ; Volume 5, Issue 3 , 2001 , Pages 425-440 ; 13632469 (ISSN) Moghaddam, H ; Mohammadi, R. K ; Sharif University of Technology
    2001
    Abstract
    In this paper, the results of recent studies on inelastic seismic response of MDOF shear- building structures are presented. In the last few decades, the concept of response modification factor R has been introduced and developed to account for inelastic nonlinear behaviour of structures under earthquakes. In this paper, an attempt has been made to adjust and extend this concept through introducing a modifying factor Rt This factor is used for dynamic analysis of MDOF structures, including the calculation of inelastic response spectra. Sensitivity analysis was carried out to identify the parameters that have influence on RT- It has been demonstrated that Rt is predominantly a function of... 

    Rapid Assesment of Peak Floor Acceleration of Structures Using Transfer Functions

    , M.Sc. Thesis Sharif University of Technology Jarrah, Vahid (Author) ; Karami Mohammadi, Reza (Supervisor)
    Abstract
    Peak Floor Acceleration (PFA) is a necessary requirement in Industrial Buildings for the design of equipment, piping, cable tray and ventilation duct supports. The seismic analysis of equipments needs the determination of PFA at the points where the equipments are fixed on the supporting structure. The classical spectral methods (SRSS, CQC) do not allow this determination which can be done in using the time integration method. This last approach needs to perform numerous calculations with various realizations of the seismic excitation. This thesis aims to present a method allowing calculating the response properties of a linear elastic shear building structure loaded by a transient... 

    Experimental Investigation on the Effects of Angle of Attack on Supersonic Intake

    , M.Sc. Thesis Sharif University of Technology Mostoufi, Keivan (Author) ; Soltani, Mohammad Reza (Supervisor)
    Abstract
    Twin intake is a new version of intakes for supersonic fighters with high performance. Investigations on these types of intakes show that with some modifications in design procedure and modifying the desired parameters, one could result in an intake compatible with the body and nose of the fighter with high efficiency. In this investigation the results of experiments on a supersonic air intake which is designed for 1.7 Mach number at angles of attack ranging from -4 to +6 degrees are presented. The main goal of this investigation is to analyze the effect of angle of attack on the performance of the intake in design and off-design conditions. In order to reduce the boundary layer thickness... 

    Simulation of Air to Air Plate Heat Exchangers to Investigate the Effects of Baffle Location, Header and Fins Geometry in their Performance

    , M.Sc. Thesis Sharif University of Technology Salehi, Sina (Author) ; Afshin, Hossein (Supervisor) ; Farhanieh, Bijan (Supervisor)
    Abstract
    Many studies have been conducted in plate heat exchangers. However, some effective parameters on the performance have been less considered. It has been demonstrated that heat exchanger performance increases with more uniform flow distribution. It is possible to make the flow distribution more uniform by installing a baffle inside the header. The ‘gap’ or the distance between this baffle and the inlet is one of the important parameters in determining performance but is has been mostly overlooked by previous studies. This study investigates the effects of inlet baffle place on heat exchanger performance. Another important factor is the header geometry. Elongation and reduction in header... 

    Effect of porosity on buckling and vibrational characteristics of the imperfect GPLRC composite nanoshell

    , Article Mechanics Based Design of Structures and Machines ; Volume 49, Issue 6 , 2021 , Pages 811-840 ; 15397734 (ISSN) Habibi, M ; Mohammadi, A ; Safarpour, H ; Ghadiri, M ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    Due to rapid development of manufacturing process, composite materials with porosity have attracted commercially notices in advanced engineering applications. For this regard, buckling and vibrational characteristics of a porous composite cylindrical nanoshell reinforced with GPLs is investigated in this paper. The material properties of piece-wise graphene-reinforced composites (GPLRC) are assumed to be graded in the thickness direction of a cylindrical nanoshell and are estimated using a nanomechanical model. The novelty of our work is including the effects of porosity and GPLRC on natural frequency, critical axial load and critical temperature of the GPLRC cylindrical nanoshell. The... 

    Pulvino and peripheral joint effects on static and seismic safety of concrete arch dams

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 1579-1594 ; 10263098 (ISSN) Hariri-Ardebili, M. A ; Mirzabozorg, H ; Ghaemian, M ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    One of the methods in limiting tensile stresses in arch dams and removing stress concentrations at the dam-foundation interface is setting the dam body on a concrete saddle called a Pulvino. In the present study, the effects of Pulvino and peripheral joints on the static behavior and seismic performance of arch dams are investigated. Dez Dam with a height of 203 m was selected as a case study and all contraction joints of the dam body were modeled using the discrete crack approach based on as-built drawings. Also, the surrounding rock was modeled as a mass-less medium tied to Pulvino. The dam-reservoirfoundation system was analyzed under static loads accounting for stage construction... 

    Financially embedded facility location decisions on designing a supply chain structure: A case study

    , Article Systems Engineering ; Volume 21, Issue 6 , 2018 , Pages 520-533 ; 10981241 (ISSN) Nobil, A. H ; Jalali, S ; Akhavan Niaki, S. T ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Abstract
    The facility location problem and its related financial issues have a significant impact on the configuration of a supply chain structure (SCS). Although affording the setup cost of facilities requires a huge financial investment, a meticulous planning to recoup it has been neglected by an overwhelming majority of previous studies. To fill this gap, an economical investment plan of facilities is determined by striking a trade-off between the contribution of the stockholders’ capital and the loan arrangement. In the context of a multiperiod three-echelon SCS, the model also determines the optimum location of plants and the best supply and distribution patterns. The model maximizes the fill... 

    New lateral force distribution for seismic design of structures

    , Article Journal of Structural Engineering ; Volume 135, Issue 8 , 2009 , Pages 906-915 ; 07339445 (ISSN) Hajirasouliha, I ; Moghaddam, H
    ASCE - American Society of Civil Engineers  2009
    Abstract
    In the conventional seismic design methods, heightwise distribution of equivalent seismic loads seems to be related implicitly on the elastic vibration modes. Therefore, the employment of such a load pattern does not guarantee the optimum use of materials in the nonlinear range of behavior. Here a method based on the concept of uniform distribution of deformation is implemented in optimization of the dynamic response of structures subjected to seismic excitation. In this approach, the structural properties are modified so that inefficient material is gradually shifted from strong to weak areas of a structure. It is shown that the seismic performance of such a structure is better than those... 

    Buckling and frequency analysis of the nonlocal strain–stress gradient shell reinforced with graphene nanoplatelets

    , Article JVC/Journal of Vibration and Control ; Volume 25, Issue 19-20 , 2019 , Pages 2627-2640 ; 10775463 (ISSN) Mohammadgholiha, M ; Shokrgozar, A ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    SAGE Publications Inc  2019
    Abstract
    In this study, buckling and vibrational characteristics of a nanoshell reinforced with graphene nanoplatelets under uniform axial load are investigated. The material properties of the piece-wise graphene-reinforced composites (GPLRCs) are assumed to be graded in the thickness direction of a nanoshell and are estimated using a nanomechanical model. The effects of the small scale are analyzed based on nonlocal stress–strain gradient theory (NSGT). The governing equations and boundary conditions (BCs) are developed using Hamilton’s principle and are solved with assistance of the generalized differential quadrature method. The novelty of the current study is the consideration of GPLRC and size... 

    Critical voltage, thermal buckling and frequency characteristics of a thermally affected GPL reinforced composite microdisk covered with piezoelectric actuator

    , Article Mechanics Based Design of Structures and Machines ; 2020 Jermsittiparsert, K ; Ghabussi, A ; Forooghi, A ; Shavalipour, A ; Habibi, M ; won Jung, D ; Safa, M ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    Due to the remarkable progress in the field of the manufacturing process, smart composites have become the desired target for high-tech engineering applications. Accordingly, for the first time, thermal buckling, critical voltage and vibration response of a thermally affected graphene nanoplatelet reinforced composite (GPLRC) microdisk in the thermal environment are explored with the aid of generalized differential quadrature method (GDQM). Also, the current microstructure is coupled with a piezoelectric actuator (PIAC). The extended form of Halpin-Tsai micromechanics is used to acquire the elasticity of the structure, whereas, the variation of thermal expansion, Poisson’s ratio, and density... 

    Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell

    , Article Waves in Random and Complex Media ; Volume 31, Issue 6 , 2021 , Pages 1655-1681 ; 17455030 (ISSN) Ebrahimi, F ; Mohammadi, K ; Barouti, M. M ; Habibi, M ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    In this article, wave propagation behavior of a size-dependent spinning graphene nanoplatelet-reinforced composite (GNPRC) cylindrical nanoshell with porosity is presented. The effects of small scale are analyzed based on nonlocal strain gradient theory (NSGT), this accurate theory employs exact length scale parameter and nonlocal constant. The governing equations of GNPRC cylindrical nanoshell coupled with piezoelectric actuator (PIAC) are evolved by minimum potential energy principle and solved by the analytical method. For the first time in the current study, wave propagation-porosity behavior of a GNPRC cylindrical nanoshell coupled with PIAC is examined based on NSGT. The results show... 

    Critical voltage, thermal buckling and frequency characteristics of a thermally affected GPL reinforced composite microdisk covered with piezoelectric actuator

    , Article Mechanics Based Design of Structures and Machines ; Volume 50, Issue 4 , 2022 , Pages 1331-1353 ; 15397734 (ISSN) Jermsittiparsert, K ; Ghabussi, A ; Forooghi, A ; Shavalipour, A ; Habibi, M ; won Jung, D ; Safa, M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Due to the remarkable progress in the field of the manufacturing process, smart composites have become the desired target for high-tech engineering applications. Accordingly, for the first time, thermal buckling, critical voltage and vibration response of a thermally affected graphene nanoplatelet reinforced composite (GPLRC) microdisk in the thermal environment are explored with the aid of generalized differential quadrature method (GDQM). Also, the current microstructure is coupled with a piezoelectric actuator (PIAC). The extended form of Halpin-Tsai micromechanics is used to acquire the elasticity of the structure, whereas, the variation of thermal expansion, Poisson’s ratio, and density... 

    Analytical model for the extraction of flaw-induced current interactions for SQUID NDE

    , Article IEEE Transactions on Applied Superconductivity ; Volume 21, Issue 4 , 2011 , Pages 3442-3446 ; 10518223 (ISSN) Sarreshtedari, F ; Hosseini, M ; Razmkhah, S ; Mehrany, K ; Kokabi, H ; Schubert, J ; Banzet, M ; Krause, H. J ; Fardmanesh, M ; Sharif University of Technology
    Abstract
    Incorporating an analytical approach to simulate the interaction of a series of long cracks and the induced current of a double-D excitation coil, we have developed a model-based method to do precise detection of the positions of the cracks in a metallic structure by using eddy-current superconducting quantum interference device (SQUID) nondestructive evaluation (NDE) measurements. Conventionally, the structure of the defects is found by iteratively solving a numerical forward problem, which is usually based on finite-element, boundary-element, or volume-integral method. This, however, incurs a heavy numerical burden, as every time the forward problem is to be solved, a rigorous numerical... 

    An optimization based approach embedded in a fuzzy connectivity algorithm for airway tree segmentation

    , Article Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08 - "Personalized Healthcare through Technology", 20 August 2008 through 25 August 2008, Vancouver, BC ; 2008 , Pages 4011-4014 ; 9781424418152 (ISBN) Yousefi Rizi, F ; Ahmadian, A. R ; Fatemizadeh, E ; Alirezaie, J ; Sharif University of Technology
    2008
    Abstract
    The main problem with airway segmentation methods which significantly influences their accuracy is leakage into the extra-luminal regions due to thinness of the airway wall during the process of segmentation. This phenomenon potentially makes large regions of lungparenchyma to be wrongly identified as airways. A solution to this problem in the previous methods was based on leak detection followed by reducing leakage during the segmentation process. This has been dealt with adjusting the segmentation parameters and performing the re-segmentation process on the pre-segmented area. This makes the algorithm very exhaustive and more dependent on the user interaction. The method presented here is...