Loading...
Search for: disturbance
0.007 seconds
Total 215 records

    An assessment of shock-disturbances interaction considering real gas effects

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 141, Issue 1 , 2019 ; 00982202 (ISSN) Hejranfar, K ; Rahmani, S ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2019
    Abstract
    In this study, a theoretical analysis is performed to assess the interaction of freestream disturbances with a plane normal shock considering real gas effects. Such effects are important in a field with high velocities and high temperatures. To perform the theoretical analysis, the downstream disturbances field is expressed as a mathematical function of the upstream one by incorporating real gas effects in the formulation. Here, the linearized one-dimensional perturbed unsteady Euler equations are used for the classification of the downstream/upstream disturbances field and the linearized one-dimensional perturbed Rankine-Hugoniot equations are applied to provide a relationship between the... 

    Application of a shock-fitted spectral collocation method for computing transient high-speed inviscid flows over a blunt nose

    , Article Journal of Computational Physics ; Vol. 257 , 2014 , pp. 954-980 ; ISSN: 00219991 Najafi, M ; Hejranfar, K ; Esfahanian, V ; Sharif University of Technology
    Abstract
    Interaction of freestream disturbances with high-speed inviscid flow over a blunt nose is simulated utilizing a shock-fitted spectral collocation method. The unsteady flow computations are made through solving the 2D Euler equations by virtue of such a dissipation-free numerical algorithm for precise unsteady flow simulations. A shock-fitting technique is employed to accurately compute the unsteady shock motions and its interaction with monochromatic freestream disturbances of different conditions. A symmetry condition is proposed to accurately model the both steady and unsteady characters of the symmetry boundary, which allows the use of halved geometries and avoids the extra computational... 

    Robust composite nonlinear feedback control for spacecraft rendezvous systems under parameter uncertainty, external disturbance, and input saturation

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; 2018 ; 09544100 (ISSN) Namdari, H ; Allahverdizadeh, F ; Sharifi, A ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    This paper presents a new robust composite nonlinear feedback control law for accurate, smooth, and fast regulation in the presence of parameter uncertainties, external disturbances, and input saturation for a class of spacecraft rendezvous systems. The novel proposed method consists of the original composite nonlinear feedback part for good transient performance plus a nonlinear disturbance rejection part for reducing the steady-state error stemming from variable disturbances and simultaneously producing feasible control input. The nonlinear disturbance rejection relies on sliding-mode observer for disturbance estimation. Closed-loop system stability has been proved with the Lyapunov... 

    Robust composite nonlinear feedback control for spacecraft rendezvous systems under parameter uncertainty, external disturbance, and input saturation

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 234, Issue 2 , 2020 , Pages 143-155 Namdari, H ; Allahverdizadeh, F ; Sharifi, A ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    This paper presents a new robust composite nonlinear feedback control law for accurate, smooth, and fast regulation in the presence of parameter uncertainties, external disturbances, and input saturation for a class of spacecraft rendezvous systems. The novel proposed method consists of the original composite nonlinear feedback part for good transient performance plus a nonlinear disturbance rejection part for reducing the steady-state error stemming from variable disturbances and simultaneously producing feasible control input. The nonlinear disturbance rejection relies on sliding-mode observer for disturbance estimation. Closed-loop system stability has been proved with the Lyapunov... 

    Hardware implementation of an ADRC controller on a gimbal mechanism

    , Article IEEE Transactions on Control Systems Technology ; 2017 ; 10636536 (ISSN) Ahi, B ; Nobakhti, A ; Sharif University of Technology
    Abstract
    Active disturbance rejection control (ADRC) is applied to a one-axis gimbal mechanism. The dynamic model of the system is derived and validated from mathematical modeling and practical experiments. Disturbances acting on the complete model of the gimbal mechanism are introduced via base lateral acceleration and angular motion. The ADRC is designed by utilizing an extended state observer for observing and suppressing the effects of external disturbances and internal parameter uncertainties. A PID controller is used to form a basis of comparison for set-point tracking and disturbance rejection performance. The effects of identification errors and observer bandwidth are experimentally... 

    Hardware implementation of an ADRC controller on a gimbal mechanism

    , Article IEEE Transactions on Control Systems Technology ; Volume 26, Issue 6 , 2018 , Pages 2268-2275 ; 10636536 (ISSN) Ahi, B ; Nobakhti, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Active disturbance rejection control (ADRC) is applied to a one-axis gimbal mechanism. The dynamic model of the system is derived and validated from mathematical modeling and practical experiments. Disturbances acting on the complete model of the gimbal mechanism are introduced via base lateral acceleration and angular motion. The ADRC is designed by utilizing an extended state observer for observing and suppressing the effects of external disturbances and internal parameter uncertainties. A PID controller is used to form a basis of comparison for set-point tracking and disturbance rejection performance. The effects of identification errors and observer bandwidth are experimentally... 

    Voltage control of three phase inverters by using active disturbance rejection control

    , Article 30th Power System Conference, PSC 2015, 23 November 2015 through 25 November 2015 ; 2017 , Pages 169-176 ; 9781509027057 (ISBN) Mehrabankhomartash, M ; Toulabi, M. R ; Ranjbar, A. M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    Control of three phase inverters is of paramount importance in the realm of control applications. In this regard, this paper proposes active disturbance rejection control (ADRC) scheme as a new method for voltage control of three phase inverters in UPS applications. The main advantage of ADRC refers to the fact that it is model independent. In this paper, the controller is composed of a double loop structure including an inner current loop and outer voltage loop. This structure is used in a three phase inverter in order for implementation of voltage control. To draw a comparison between ADRC and PI as the common control method, a case study has been simulated in SIMULINK. Simulation results... 

    An assessment of shock-disturbances interaction considering real gas effects

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 141, Issue 1 , 2019 ; 00982202 (ISSN) Hejranfar, K ; Rahmani, S ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2019
    Abstract
    In this study, a theoretical analysis is performed to assess the interaction of freestream disturbances with a plane normal shock considering real gas effects. Such effects are important in a field with high velocities and high temperatures. To perform the theoretical analysis, the downstream disturbances field is expressed as a mathematical function of the upstream one by incorporating real gas effects in the formulation. Here, the linearized one-dimensional perturbed unsteady Euler equations are used for the classification of the downstream/upstream disturbances field and the linearized one-dimensional perturbed Rankine-Hugoniot equations are applied to provide a relationship between the... 

    High-speed imaging database of water jet disintegration Part II: Temporal analysis of the primary breakup

    , Article International Journal of Multiphase Flow ; Volume 145 , 2021 ; 03019322 (ISSN) Rezayat, S ; Farshchi, M ; Berrocal, E ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This paper is Part II of a series of articles focusing on the disintegration of a cylindrical (Ø=0.60 mm diameter) water jet in a quiescent atmosphere, from Rayleigh to early atomization breakup regimes. Liquid fluorescence high-speed imaging is used here, instead of shadowgraphy, providing a more faithful representation of liquid jet breakup dynamics as described in Part I (Roth et al., 2021). Using these data, the aim of this article is to perform a temporal analysis of the primary breakup process and to investigate the variation of breakup length in the time-domain, under each breakup regime. The results indicate that the liquid jet velocity at the onset of primary breakup oscillates... 

    Estimation and Control of Harmonic Disturbances Due to Mass Unbalance and Sensor Runout in Three-Pole Active Magnetic Bearing

    , M.Sc. Thesis Sharif University of Technology Habibollahi, Alireza (Author) ; Behzad, Mehdi (Supervisor) ; Manzuri, Mohammad Taghi (Co-Advisor)
    Abstract
    Disturbances due to sensor runout and mass unbalance are the main sources of harmonic disturbances in active magnetic bearing systems. Existence of this type of the disturbance not only causes harmonic vibrations in the system but also changes the steady-state position of the axis of rotation from the geometric center of the AMB. In this research, an observer-based control method used to estimate and reject this disturbance. Proposed integral observer estimates dc and harmonic content of the sensor runout and also estimates the states of the system at the same time with good precision. Lyapunov method is used to prove asymptotic stability of the proposed observer and demonstrated that sensor... 

    Disturbance Reduction Servo Motor Controller Design and Implementation

    , M.Sc. Thesis Sharif University of Technology Ahi, Behzad (Author) ; Nobakhti, Amin (Supervisor)
    Abstract
    The servomechanisms have wide industrial application such as robotics, Computer Numerical Control (CNC) machines, automated manufacturing and solar tracking. Several methods have already been proposed for servo motor control that the most important of them are Proportional Integral Derivative (PID), H2/H--, intelligent based controllers, and model predictive control. Problem specifications and user requirements, will determine the appropriate approach in each case. The aim of this thesis is construction of a real-life camera stabilizer to be used in the motion picture industry. Effects of base movement on the performance should be decreased by choosing appropriate sensors and control... 

    Boundary control of a vertical nonlinear flexible manipulator considering disturbance observer and deflection constraint with torque and boundary force feedback signals

    , Article International Journal of Systems Science ; 2021 ; 00207721 (ISSN) Entessari, F ; Najafi Ardekany, A ; Alasty, A ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    In this paper, boundary control (BC) laws are designed to find a BC solution for a single-link nonlinear vertical manipulator to suppress the link’s transverse vibrations and control the rigid body nonlinear large rotating motion. The governing equations of motions and boundary conditions, which all consist of a set of PDEs and ODEs have been derived based on the Hamilton principle. It is desired to regulate large angular orientation, suppress the flexible link’s transverse vibrations and compensate the boundary disturbance simultaneously. The amount of elastic boundary vibration has remained within the constraint range. By considering novel Barrier-Integral Lyapunov functional in order to... 

    Experimental investigation on the micro-step control disturbance rejection under random excitations

    , Article DETC2005: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA, 24 September 2005 through 28 September 2005 ; Volume 1 B , 2005 , Pages 1747-1751 ; 0791847381 (ISBN) Ghafari, A. S ; Behzad, M ; Sharif University of Technology
    2005
    Abstract
    Effect of random signals with various powers, as current loads, on positioning and disturbance rejection problems on micro-step PID closed loop control system is addressed in this paper. Experimental results due to implementing different white noise power, speed, and a 0.3 N.m disturbance load torque show that, Random noise source changes current profile and affects the accuracy of positioning in tracking and disturbance rejection problems. Performance of the PID proposed controller under the implementation of random noise on phases of the HSM has been proved to be accurate enough even under disturbance torque acting on the system. Copyright © 2005 by ASME  

    Online Multi-step Ahead Prediction of Time-Varying Solar and Geomagnetic Activity Indices via Adaptive Neurofuzzy Modeling and Recursive Spectral Analysis

    , Article Solar Physics ; Volume 272, Issue 1 , 2011 , Pages 189-213 ; 00380938 (ISSN) Mirmomeni, M ; Lucas, C ; Araabi, B. N ; Moshiri, B ; Bidar, M. R ; Sharif University of Technology
    2011
    Abstract
    The time-varying Sun as the main source of space weather affects the Earth's magnetosphere by emitting hot magnetized plasma in the form of solar wind into interplanetary space. Solar and geomagnetic activity indices and their chaotic characteristics vary abruptly during solar and geomagnetic storms. This variation depicts the difficulties in modeling and long-term prediction of solar and geomagnetic storms. On the other hand, the combination of neurofuzzy models and spectral analysis has been a subject of interest due to their many practical applications in modeling and predicting complex phenomena. However, these approaches should be trained by algorithms that need to be carried out by an... 

    Design and implementation of extended predictive functional control for boiler-turbine unit of power plant

    , Article 24th Mediterranean Conference on Control and Automation, 21 June 2016 through 24 June 2016 ; 2016 , Pages 131-134 ; 9781467383455 (ISBN) Amirabadi Farahani, M ; Haeri, M ; MCA ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    In this paper, a new model predictive controller is introduced to control a power unit process with three inputs and three outputs. This method is proposed to reduce the complexity of the required computation. In fact, the presented controller ensures achieving an acceptable performance in the presence of noise and disturbances and reduces the volume of calculations to control a complex and nonlinear boilerturbine process. The simulation results indicate that the implementation of the proposed controller requires less computing time while the performance degradation is not more than five percent  

    Harmonic disturbance attenuation in a three-pole active magnetic bearing test rig using a modified notch filter

    , Article JVC/Journal of Vibration and Control ; Volume 23, Issue 5 , 2017 , Pages 770-781 ; 10775463 (ISSN) Mahdi Darbandi, S ; Behzad, M ; Salarieh, H ; Mehdigholi, H ; Sharif University of Technology
    Abstract
    This study is concerned with the problem of harmonic disturbance rejection in active magnetic bearing systems. A modified notch filter is presented to identify both constant and harmonic disturbances caused by sensor runout and mass unbalance. The proposed method can attenuate harmonic displacement and currents at the synchronous frequency and its integer multiples. The reduction of stability is a common problem in adaptive techniques because they alter the original closed-loop system. The main advantage of the proposed method is that it is possible to determine the stability margins of the system by few parameters. The negative phase shift of the modified notch filter can be tuned to... 

    Robust modeling, sliding-mode controller, and simulation of an underactuated rov under parametric uncertainties and disturbances

    , Article Journal of Marine Science and Application ; 2018 ; 16719433 (ISSN) Eslami, M ; Chin, C. S ; Nobakhti, A ; Sharif University of Technology
    Harbin Engineering University  2018
    Abstract
    A dynamic model of a remotely operated vehicle (ROV) is developed. The hydrodynamic damping coefficients are estimated using a semi-predictive approach and computational fluid dynamic software ANSYS-CFX™ and WAMIT™. A sliding-mode controller (SMC) is then designed for the ROV model. The controller is subsequently robustified against modeling uncertainties, disturbances, and measurement errors. It is shown that when the system is subjected to bounded uncertainties, the SMC will preserve stability and tracking response. The paper ends with simulation results for a variety of conditions such as disturbances and parametric uncertainties. © 2018, Harbin Engineering University and Springer-Verlag... 

    Robust modeling, sliding-mode controller, and simulation of an underactuated rov under parametric uncertainties and disturbances

    , Article Journal of Marine Science and Application ; Volume 18, Issue 2 , 2019 , Pages 213-227 ; 16719433 (ISSN) Eslami, M ; Chin, C. S ; Nobakhti, A ; Sharif University of Technology
    Harbin Engineering University  2019
    Abstract
    A dynamic model of a remotely operated vehicle (ROV) is developed. The hydrodynamic damping coefficients are estimated using a semi-predictive approach and computational fluid dynamic software ANSYS-CFX™ and WAMIT™. A sliding-mode controller (SMC) is then designed for the ROV model. The controller is subsequently robustified against modeling uncertainties, disturbances, and measurement errors. It is shown that when the system is subjected to bounded uncertainties, the SMC will preserve stability and tracking response. The paper ends with simulation results for a variety of conditions such as disturbances and parametric uncertainties. © 2018, Harbin Engineering University and Springer-Verlag... 

    Robust control strategy for HBV treatment: Considering parametric and nonparametric uncertainties

    , Article Control Applications for Biomedical Engineering Systems ; 2020 , Pages 127-147 Aghajanzadeh, O ; Sharifi, M ; Falsafi, A ; Sharif University of Technology
    Elsevier Inc  2020
    Abstract
    Hepatitis is one of the most perilous viral infectious diseases and many people suffer from it all around the world. In particular, hepatitis B is a terribly dangerous disease which may cause severe liver damage or cancer if it is not treated. Recently, several dynamic models have been developed from experimental studies for describing such diseases mathematically. The certainty of these dynamics models is questionable in realistic treatment processes. Thus, the modeling uncertainties should be considered in the dynamics, which necessitates employing robust control strategies capable to overcome these uncertainties. Accordingly, in this research, a control strategy is developed in order to... 

    Simulation-optimization framework for train rescheduling in rapid rail transit

    , Article Transportmetrica B ; 2020 Hassannayebi, E ; Sajedinejad, A ; Kardannia, A ; Shakibayifar, M ; Jafari, H ; Mansouri, E ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    One of the primary challenges of re-planning in high-speed urban railways is the randomness of disruptive events. In this study, an integrated disturbance recovery model presented in which short-turn and stop-skip service operations are optimized together to minimize the average of passengers’ waiting times. This study develops a discrete-event simulation model that employs a variable neighborhood search algorithm to maintain the service level under infrastructure elements’ unavailability. Due to the unpredictable nature of the incidents, the uncertainty associated with obstruction duration is experimentally analyzed through probabilistic scenarios. The computational experiments are...