Loading...
Search for: doxycycline
0.005 seconds

    A machine learning framework for predicting entrapment efficiency in niosomal particles

    , Article International Journal of Pharmaceutics ; Volume 627 , 2022 ; 03785173 (ISSN) Kashani Asadi Jafari, F ; Aftab, A ; Ghaemmaghami, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Niosomes are vesicles formed mostly by nonionic surfactant and cholesterol incorporation as an excipient. The drug entrapment efficiency of niosomal vesicles is particularly important and depends on many parameters. Changing the effective parameters to have maximum entrapment efficiency in the laboratory is time-consuming and costly. In this study, a machine learning framework was proposed to address these problems. In order to find the most critical parameter affecting the entrapment efficiency and its optimal value in a specific experiment, data were first extracted from articles of the last decade using keywords of niosome and thin-film hydration method. Then, deep neural network (DNN),... 

    Optimized doxycycline-loaded niosomal formulation for treatment of infection-associated prostate cancer: An in-vitro investigation

    , Article Journal of Drug Delivery Science and Technology ; Volume 57 , 2020 Akbarzadeh, I ; Tavakkoli Yaraki, M ; Bourbour, M ; Noorbazargan, H ; Lajevardi, A ; Sadat Shilsar, S. M ; Heidari, F ; Mousavian, S. M ; Sharif University of Technology
    Editions de Sante  2020
    Abstract
    Developing drug delivery systems with both antibacterial and anti-cancer effects is of importance in the treatment process of infection-associated cancers, especially prostate cancer. In this study, Span 60, Tween 60, and cholesterol were used to formulate doxycycline-loaded niosomes as a promising drug carrier system as either antibacterial or anticancer formulation. The formulation process was optimized by multi-objective response surface methodology (RSM), and then characterized. The developed niosomal formulation showed great storage stability for up to 2 weeks. In addition, they showed remarkable drug release in acidic solution (pH = 3) compared with physiological pH (7.4). The in-vitro...