Loading...
Search for: driers--materials
0.011 seconds

    Azaborininones: synthesis and structural analysis of a carbonyl-containing class of azaborines

    , Article Journal of Organic Chemistry ; Volume 82, Issue 10 , 2017 , Pages 5380-5390 ; 00223263 (ISSN) Davies, G. H. M ; Mukhtar, A ; Saeednia, B ; Sherafat, F ; Kelly, C. B ; Molander, G. A ; Sharif University of Technology
    Abstract
    An approach to access azaborininones (carbonyl-containing, boron-based heterocyclic scaffolds) using simple reagents and conditions from both organotrifluoroborates and boronic acids is described. An inexpensive, common reagent, SiO2, was found to serve as both a fluorophile and desiccant to facilitate the annulation process across three different azaborininone platforms. Computational analysis of some of the cores synthesized in this study was undertaken to compare the azaborininones with the analogous carbon-based heterocyclic systems. Computationally derived pKa values, NICS aromaticity calculations, and electrostatic potential surfaces revealed a unique isoelectronic/isostructural... 

    Combined desiccant-ejector cooling system assisted by organic rankine cycle for zero-power cooling and dehumidification

    , Article International Conference on Climate Resilient Cities - Energy Efficiency and Renewables in the Digital Era 2019, CISBAT 2019, 4 September 2019 through 6 September 2019 ; Volume 1343, Issue 1 , 2019 ; 17426588 (ISSN) Heidari, A. R ; Rostamzadeh, H ; Khovalyg, D ; Scartezzini, J. L ; Smith, B ; Swiss Federal Office of Energy ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    This study presents a novel set-up for desiccant-based cooling and dehumidification systems. In this cycle, a solid desiccant and conventional combined cooling and power (CCP) systems, based on the ejector refrigeration cycle (ERC) and the organic Rankine cycle (ORC), are integrated to provide dehumidification and cooling, simultaneously. The ERC is integrated with the ORC for devising a self-powered design which has not been done until now. The proposed integrated system is useful for replacing the peak electricity demand with the heat demand, decreasing the pressure on the power grid in humid areas. Dynamic hourly simulation of the proposed system as well as a conventional system were... 

    An innovative solar assisted desiccant-based evaporative cooling system for co-production of water and cooling in hot and humid climates

    , Article Energy Conversion and Management ; Volume 185 , 2019 , Pages 396-409 ; 01968904 (ISSN) Heidari, A ; Roshandel, R ; Vakiloroaya, V ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Although evaporative coolers consume much lower electricity than the vapor compression systems, they are not applicable in humid climates. Combination of desiccant wheels and evaporative coolers, known as desiccant-based evaporative cooling systems, allows evaporative coolers to be used in humid climates, which provide significant energy and environmental advantages with respect to vapor compression systems. However, one of the main disadvantages of evaporative cooling is the high water. Regarding the global water crisis, a cooling system which saves both water and energy will be an attractive alternative to the current cooling systems. To this aim, this paper presents a novel... 

    A new approach to exergy analyses of a hybrid desiccant cooling system compares to a vapor compression system

    , Article Applied Mechanics and Materials, 29 July 2011 through 31 July 2011 ; Volume 110-116 , July , 2012 , Pages 2163-2169 ; 16609336 (ISSN) ; 9783037852620 (ISBN) Khosravi, S ; Yau, Y. H ; Mahlia, T. M. I ; Saidi, M. H ; Sharif University of Technology
    Abstract
    In the recent researches HVAC with a based desiccant dehumidifier with a low ambient impact is more efficient in comparison to the traditional systems. Hybrid desiccant cooling systems can be used to control indoor air quality in buildings. This paper presents an integrated energy, entropy and exergy analysis of a hybrid desiccant cooling system compare to a compression system based on first and second laws of thermodynamic. The main objective is the use of a method called exergy costing applied to a conventional compression system that has been chosen to provide the proper conditioned air for a building in hot and humid condition. By applying the same method for the equivalent hybrid... 

    A newmodel for permeability reduction rate due to calciumsulfate precipitation in sandstone cores

    , Article Journal of Porous Media ; Volume 13, Issue 10 , 2010 , Pages 911-922 ; 1091028X (ISSN) Tahmasebi, H. A ; Soltanieh, M ; Kharrat, R ; Sharif University of Technology
    2010
    Abstract
    In this work, a reliable dimensionless correlation is proposed for prediction of permeability reduction rate in porous media, which is verified by experimental data obtained in this work in glass bead and sand pack as well as the core data from the literature. Although this correlation is based on the data which were obtained in our work in glass bead and sand-packed media at low pressure, it shows considerable flexibility to match with the extracted data for sandstone cores at high pressure, various flow rates, different temperatures and concentrations of calcium, and sulfate ions in brine solutions. In addition, a novel relationship for predicting the rate of precipitation of CaSO4 in... 

    Effect of specimen preparation techniques on dynamic properties of unsaturated fine-grained soil at high suctions

    , Article Canadian Geotechnical Journal ; Volume 54, Issue 9 , 2017 , Pages 1310-1319 ; 00083674 (ISSN) Ng, C. W. W ; Baghbanrezvan, S ; Sadeghi, H ; Zhou, C ; Jafarzadeh, F ; Sharif University of Technology
    Canadian Science Publishing  2017
    Abstract
    The seismic response of soil depends on proper evaluation and use of soil dynamic properties, including shear modulus and damping ratio at various strain levels. Despite extensive studies on the shear modulus and damping ratio of saturated soils, research on the dynamic properties of unsaturated fine-grained soils — especially at high suction — is limited. This study aims to investigate the dynamic properties of loess at a variety of initial states resulting from different specimen preparation techniques (reconstituted, recompacted, and intact) and their evolutions due to suction-induced desiccation. Results of resonant column tests show that at initial states, the specimen preparation... 

    A novel hybrid desiccant-based ejector cooling system for energy and carbon saving in hot and humid climates

    , Article International Journal of Refrigeration ; Volume 101 , Volume 101 , 2019 , Pages 196-210 ; 01407007 (ISSN) Heidari, A ; Rostamzadeh, H ; Avami, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Desiccant-based evaporative cooling systems are considered as an energy efficient alternative to conventional vapor compression systems in humid climates. A novel hybrid desiccant-based ejector cooling (hybrid DEC) system is here presented to utilize low grade heat. In order to evaluate the system performance under subtropical humid climates, a dynamic hourly simulation of the system is performed for a typical building in Sydney. The results indicate that the hybrid DEC system is able to provide comfort conditions in subtropical and humid climates. Hybrid DEC system has a significant higher coefficient of performance compared to the conventional vapor compression system resulting to 84%... 

    Evaluation of desiccant wheel and prime mover as combined cooling, heating, and power system

    , Article International Journal of Green Energy ; Volume 16, Issue 3 , 2019 , Pages 256-268 ; 15435075 (ISSN) Mohammadian Korouyeh, M ; Saidi, M. H ; Najafi, M ; Aghanajafi, C ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    In this research heating, cooling and electrical demands of a residential tower are evaluated for Iran various weather conditions. For this purpose, several cities are selected as the representative of the specific weather conditions. To meet the cooling demand, desiccant cooling system plus alternative systems are applied. To analyze desiccant wheel, outlet humidity and temperature have been modeled. Also, the effect of rotational speed and regeneration temperature on entropy generation of the desiccant wheel has been studied based on the obtained results. It is deduced that the entropy generation may be increased by increasing the regeneration temperature and the rotational speed. To... 

    Microscopic insight into kinetics of inorganic scale deposition during smart water injection using dynamic quartz crystal microbalance and molecular dynamics simulation

    , Article Industrial and Engineering Chemistry Research ; Volume 59, Issue 2 , 2020 , Pages 609-619 Mirzaalian Dastjerdi, A ; Kargozarfard, Z ; Najafi, B ; Taghikhani, V ; Ayatollahi, S ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    Inorganic scale deposition has been found to affect many industrial processes, including water injection into the oil reservoirs. The incompatibility of high sulfate ion content of seawater with formation water containing calcium ions results in formation damage and production decline. In this study, several simultaneous techniques are utilized for qualitative and quantitative analyses of calcium sulfate scale to get more insight into the formation damage during smart water flooding at micro and nanoscales. In the experimental section, calcium sulfate deposition due to the mixing of the formation water and seawater samples was investigated using the dynamic quartz crystal microbalance... 

    A review on the water-energy nexus for drinking water production from humid air

    , Article Renewable and Sustainable Energy Reviews ; Volume 120 , 2020 Salehi, A. A ; Ghannadi Maragheh, M ; Torab Mostaedi, M ; Torkaman, R ; Asadollahzadeh, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The Supply of sustainable freshwater has turned into a fundamental problem in numerous countries. The increment in population, the industrialization of the world, and variation in global warming temperatures lead to an increase in droughts, storms, and floods around the world. Therefore, the problems of water scarcity appear worldwide. Contrary to popular belief, the largest reserves of water are available in the air. Accordingly, several technologies have been developed for the production of drinking water from humid air in the research works. But, the critical problem is the high energy consumption in this equipment. Therefore, the issues of water-energy nexus are the particular subject in... 

    Desiccation of a saline lake as a lock-in phenomenon: A socio-hydrological perspective

    , Article Science of the Total Environment ; Volume 811 , 2022 ; 00489697 (ISSN) Pouladi, P ; Nazemi, A. R ; Pouladi, M ; Nikraftar, Z ; Mohammadi, M ; Yousefi, P ; Yu, D. J ; Afshar, A ; Aubeneau, A ; Sivapalan, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Understanding of how anthropogenic droughts occur in socio-hydrological systems is critical in studying resilience of these systems. This is especially relevant when a “lock-in” toward watershed desiccation occurs as an emergent outcome of coupling among social dynamics and surface and underground water processes. How the various processes collectively fit together to reinforce such a lock-in and what may be a critical or ignored feedback worsening the state of the socio-hydrological systems remains poorly understood. Here we tackle this gap by focusing on the case of Lake Urmia in Iran, a saline lake that faces the same fate as that of Aral Sea due to over-extraction of water sources that... 

    Metal-organic frameworks (MOF) based heat transfer: A comprehensive review

    , Article Chemical Engineering Journal ; Volume 449 , 2022 ; 13858947 (ISSN) Moayed Mohseni, M ; Jouyandeh, M ; Mohammad Sajadi, S ; Hejna, A ; Habibzadeh, S ; Mohaddespour, A ; Rabiee, N ; Daneshgar, H ; Akhavan, O ; Asadnia, M ; Rabiee, M ; Ramakrishna, S ; Luque, R ; Reza Saeb, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Higher than a standard level, the humidity provides a suitable environment for the pathogenic microorganisms to grow and increases energy consumption for cooling, increasing greenhouse gas emissions. Desiccant air-conditioning (DAC) is an effective method to reduce humidity and energy simultaneously. Conventional desiccants are not suitable for use as a desiccant in building air conditioners, mainly because of high regeneration temperature and other issues such as limited equilibrium capacity and hydrothermal and cyclic instability. Metal-organic frameworks (MOFs) are a novel class of porous crystalline materials without the disadvantages of traditional desiccants. They benefit from a huge... 

    Investigation on asphaltene deposition mechanisms during CO2 flooding processes in porous media: A novel experimental study and a modified model based on multilayer theory for asphaltene adsorption

    , Article Energy and Fuels ; Volume 26, Issue 8 , 2012 , Pages 5080-5091 ; 08870624 (ISSN) Jafari Behbahani, T ; Ghotbi, C ; Taghikhani, V ; Shahrabadi, A ; Sharif University of Technology
    2012
    Abstract
    In this paper, oil recovery and permeability reduction of a tight sandstone core sample in miscible CO2 flooding processes due to asphaltene deposition were studied using an Iranian bottom hole live oil sample in order to distinguish between the mechanical plugging and adsorption mechanisms of asphaltene involved in the interfacial interaction of the asphaltene/mineral rock system. A novel experimental method was designed and proposed to measure the amount of deposited asphaltene due to different mechanisms using the cyclohexane or toluene reverse flooding and spectrophotometer. In this work, the bottom hole live oil sample was injected first to a long core and then CO 2 injection was... 

    Optimization of solar collector surface in solar desiccant wheel cycle

    , Article Energy and Buildings ; Volume 45 , February , 2012 , Pages 197-201 ; 03787788 (ISSN) Hatami, Z ; Saidi, M. H ; Mohammadian, M ; Aghanajafi, C ; Sharif University of Technology
    2012
    Abstract
    This work presents the optimization of a solar collector surface in solar desiccant wheel cycle which for cooling process with typical configuration naming desiccant wheel, heat exchanger and water spray evaporative cooler. In this cooling cycle the thermal solar energy has used to heat the regeneration air of desiccant wheel cycle. The optimum solar collector surface has determined by taking into account of design parameters such as velocity of air, wheel speed, thickness of the desiccant and hydraulic diameter of the desiccant wheel and also operating conditions such as outside temperature, outside relative humidity, regeneration air temperature and total solar irradiance. For this... 

    Three-dimensional desiccation modeling of very soft soils

    , Article Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering ; Volume 1 , 2009 , Pages 421-424 ; 9781607500315 (ISBN) Pak, A ; Samimi, S ; Sharif University of Technology
    Abstract
    Self-weight consolidation and desiccation phenomena of ultra soft soils and slurries have important implications in mining, coastal, and environmental engineering. Disposal of mine tailings behind tailings impoundments, transportation of dredged materials and land reclamation, and disposing of sludge in water/wastewater treatment facilities are some of the engineering applications where self-weight consolidation and desiccation of slurries are of concern. Numerical modeling of desiccation phenomenon is a relatively new subject that enables geotechnical engineers to better manage the large volume of mine tailings, dredged materials, and other slurries that are disposed in confined disposal... 

    Asphaltene deposition under dynamic conditions in porous media: Theoretical and experimental investigation

    , Article Energy and Fuels ; Volume 27, Issue 2 , 2013 , Pages 622-639 ; 08870624 (ISSN) Jafari Behbahani, T ; Ghotbi, C ; Taghikhani, V ; Shahrabadi, A ; Sharif University of Technology
    2013
    Abstract
    In this work, a new model based on the multilayer adsorption kinetic mechanism and four material balance equations for oil, asphaltene, gas, and water phase has been developed to account for asphaltene deposition in porous media under dynamic conditions and the model was verified using experimental data obtained in this work and also with those reported in the literature. The results showed that the developed model based on multilayer adsorption kinetic mechanism can correlate more accurately the oil flooding experimental data in comparison to the previous models based on the mechanical plugging mechanism, in particular in carbonate core samples. Also, a series of experiments was carried to... 

    The lake urmia environmental disaster in Iran: a look at aerosol pollution

    , Article Science of the Total Environment ; Volume 633 , 2018 , Pages 42-49 ; 00489697 (ISSN) Hossein Mardi, A ; Khaghani, A ; MacDonald, A. B ; Nguyen, P ; Karimi, N ; Heidary, P ; Karimi, N ; Saemian, P ; Sehatkashani, S ; Tajrishy, M ; Sorooshian, A ; Sharif University of Technology
    Abstract
    Lake Urmia (LU) once was the second largest hypersaline lake in the world, covering up to 6000 km2, but has undergone catastrophic desiccation in recent years resulting in loss of 90% of its area and extensive coverage by playas and marshlands that represent a source of salt and dust. This study examines daily Aerosol Optical Depth (AOD) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) between 2001 and 2015 over northwestern Iran, which encompasses LU. Intriguingly, salt emissions from the LU surface associated with ongoing desiccation do not drive the study region's AOD profile, whereas pollution transported from other regions and emissions around LU are more important....