Loading...
Search for: drug-effect
0.007 seconds
Total 72 records

    Highly efficient hydroxyapatite/TiO2 composites covered by silver halides as E. coli disinfectant under visible light and dark media

    , Article Photochemical and Photobiological Sciences ; Volume 12, Issue 10 , 2013 , Pages 1787-1794 ; 1474905X (ISSN) Azimzadehirani, M ; Elahifard, M ; Haghighi, S ; Gholami, M ; Sharif University of Technology
    2013
    Abstract
    TiO2-based photocatalysts are seen as the most common agents for the photodegradation of bacteria. In this study, AgCl/TiO2, hydroxyapatite(Hp)/AgCl/TiO2, AgI/TiO2, and Hp/AgI/TiO2 were prepared by the deposition-precipitation method on P25 TiO2 nanoparticles and were characterized by XRD, SEM, FT-IR, EDX and BET methods. The prepared composites showed high efficiency for the inactivation of Escherichia coli (E. coli) bacteria under visible light and in dark media with different catalyst amounts of 12 and 24 mg, respectively. In less than 30 min, AgI/TiO2, prepared by the combination of cationic surfactant and PVPI2, disinfected 1 × 107 colony-forming units of E. coli completely. However,... 

    Carbon nanotubes in cancer therapy: A more precise look at the role of carbon nanotube-polymer interactions

    , Article Chemical Society Reviews ; Volume 42, Issue 12 , Feb , 2013 , Pages 5231-5256 ; 03060012 (ISSN) Adeli, M ; Soleyman, R ; Beiranvand, Z ; Madani, F ; Sharif University of Technology
    2013
    Abstract
    Despite the great potential of carbon nanotubes (CNTs) in various areas of biomedicine, concerns regarding their carcinogenicity, inefficient dispersion in aqueous solutions and biological activity in vivo still remain. One important and feasible route to overcome these barriers is modification of CNTs with polymers, which are widely studied and play a vital role in biological and biomedical fields, especially in drug delivery. This comprehensive review focuses on the achievements of our and other groups in currently used methods to functionalize the surface of CNTs with polymers to produce anticancer drug delivery systems. We have intensively studied covalent and noncovalent interactions... 

    Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti-6Al-4V by sol-gel method for biomedical applications: An in vitro study

    , Article Materials Science and Engineering C ; Volume 33, Issue 4 , 2013 , Pages 2002-2010 ; 09284931 (ISSN) Abrishamchian, A ; Hooshmand, T ; Mohammadi, M ; Najafi, F ; Sharif University of Technology
    2013
    Abstract
    In the present research, the introduction of multi-walled carbon nanotubes (MWCNTs) into the hydroxyapatite (HA) matrix and dip coating of nanocomposite on titanium alloy (Ti-6Al-4V) plate was conducted in order to improve the performance of the HA-coated implant via the sol-gel method. The structural characterization and electron microscopy results confirmed well crystallized HA-MWCNT coating and homogenous dispersion of carbon nanotubes in the ceramic matrix at temperatures as low as 500 C. The evaluation of the mechanical properties of HA and HA/MWCNT composite coatings with different weight percentages of MWCNTs showed that the addition of low concentrations of MWCNTs (0.5 and 1 wt.%)... 

    Possible role for growth hormone in suppressing acylated ghrelin and hunger ratings during and after intermittent exercise of different intensities in obese individuals

    , Article Acta Medica Iranica ; Vol. 52, Issue. 1 , 2014 , pp. 29-37 ; ISSN: 1735-9694 Gholipour, M ; Kordi, M. R ; Taghikhani, M ; Ravasi, A. A ; Gaeini, A. A ; Tabrizi, A ; Sharif University of Technology
    Abstract
    Body weight is influenced by both food intake and energy expenditure. Acylated ghrelin enhances appetite, and its circulating level is suppressed by Growth Hormone. Data on the acylated ghrelin responses to exercise of different intensities in obese individuals are currently not available. This study examined the effects of an intermittent exercise protocol on acylated ghrelin levels and hunger ratings in obese people. Nine inactive male ran on the treadmill at 0900 with progressive intensities of 50, 60, 70, and 80% of VO2max for 10, 10, 5, and 2 min respectively. Blood samples were collected before the exercise at 0845 (-15 min as the resting values), after each workload (10, 23, 31, and... 

    Functional analyses of recombinant mouse hepcidin-1 in cell culture and animal model

    , Article Biotechnology Letters ; Volume 35, Issue 8 , August , 2013 , Pages 1191-1197 ; 01415492 (ISSN) Yazdani, Y ; Keyhanvar, N ; Kalhor, H. R ; Rezaei, A ; Sharif University of Technology
    2013
    Abstract
    Hepcidin is a peptide hormone that plays an important role in iron metabolism. We have produced a recombinant mouse hepcidin-1 by using baculovirus expression system. Its expression yield was 25 μg/ml when cell culture media were supplemented with a protease inhibitor cocktail. The recombinant mouse hepcidin-1 and synthetic human hepcidin-25 had similar effects on reducing ferroportin expression in J774A cell line and in peritoneal macrophages. However, synthetic human hepcidin-25 was more efficient than recombinant mouse hepcidin-1 in reducing iron concentration in blood circulation (p < 0.01)  

    Identification of an aspidospermine derivative from borage extract as an anti-amyloid compound: A possible link between protein aggregation and antimalarial drugs

    , Article Phytochemistry ; Volume 140 , 2017 , Pages 134-140 ; 00319422 (ISSN) Kalhor, H. R ; Ashrafian, H ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    A number of human diseases, including Alzheimer's and Parkinson's have been linked to amyloid formation. To search for an anti-amyloidogenic product, alkaloid enriched extract from borage leaves was examined for anti-amyloidogenic activity using Hen Egg White Lysozyme (HEWL) as a model protein. After isolation of the plant extract using rHPLC, only one fraction indicated a significant bioactivity. TEM analysis confirmed a remarkable reduction of amyloid fibrils in the presence of the bioactive fraction. To identify the effective substance in the fraction, mass spectrometry, FTIR, and NMR were performed. Our analyses determined that the bioactive compound as... 

    In vitro biological outcome of laser application for modification or processing of titanium dental implants

    , Article Lasers in Medical Science ; Volume 32, Issue 5 , 2017 , Pages 1197-1206 ; 02688921 (ISSN) Hindy, A ; Farahmand, F ; Tabatabaei, F. S ; Sharif University of Technology
    Abstract
    There are numerous functions for laser in modern implant dentistry including surface treatment, surface coating, and implant manufacturing. As laser application may potentially improve osseointegration of dental implants, we systematically reviewed the literature for in vitro biological responses to laser-modified or processed titanium dental implants. The literature was searched in PubMed, ISI Web, and Scopus, using keywords “titanium dental implants,” “laser,” “biocompatibility,” and their synonyms. After screening the 136 references obtained, 28 articles met the inclusion criteria. We found that Nd:YAG laser was the most commonly used lasers in the treatment or processing of titanium... 

    Apoptotic and anti-apoptotic genes transcripts patterns of graphene in mice

    , Article Materials Science and Engineering C ; Volume 71 , 2017 , Pages 460-464 ; 09284931 (ISSN) Ahmadian, H ; Hashemi, E ; Akhavan, O ; Shamsara, M ; Hashemi, M ; Farmany, A ; Daliri Joupari, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Recent studies showed that a large amount of graphene oxide accumulated in kidney and liver when it injected intravenously. Evaluation of lethal and apoptosis gene expression in these tissues, which are under stress is very important. In this paper the in vivo dose-dependent effects of graphene oxide and reduced graphene oxide nanoplatelets on kidney and liver of mice were studied. Balb/C mice were treated by 20 mg/kg body weight of nanoplatelets. Molecular biology analysis showed that graphene nanoplatelets injected intravenously lead to overexpression of BAX gene in both kidney and liver tissues (P ≥ 0.01). In addition these nanoparticles significantly increase BCL2 gene expression in both... 

    Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers

    , Article International Journal of Biological Macromolecules ; Volume 116 , 2018 , Pages 272-280 ; 01418130 (ISSN) Fazeli, M ; Keley, M ; Biazar, E ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    The current study deals with the preparation and characterization of polysaccharide-based biocomposite films acquired by the incorporation of cellulose nanofiber within glycerol plasticized matrix formed by starch. The application of starch-based films is limited due to highly hydrophilic nature and poor mechanical properties. These problems are solved by forming a nanocomposite of thermoplastic starch (TPS) as matrix and cellulose nanofiber (CNF) as reinforcement. CNF is successfully prepared from short henequen fibers which consist of almost 60% cellulose by a chemo-mechanical process. TPS/CNF composite films are prepared by the polymer solution casting method, and their characterizations... 

    Capturing single-cell heterogeneity via data fusion improves image-based profiling

    , Article Nature Communications ; Volume 10, Issue 1 , 2019 ; 20411723 (ISSN) Rohban, M. H ; Abbasi, H. S ; Singh, S ; Carpenter, A. E ; Sharif University of Technology
    Nature Publishing Group  2019
    Abstract
    Single-cell resolution technologies warrant computational methods that capture cell heterogeneity while allowing efficient comparisons of populations. Here, we summarize cell populations by adding features’ dispersion and covariances to population averages, in the context of image-based profiling. We find that data fusion is critical for these metrics to improve results over the prior alternatives, providing at least ~20% better performance in predicting a compound’s mechanism of action (MoA) and a gene’s pathway. © 2019, The Author(s)  

    Prevention of gestational diabetes mellitus (GDM) and probiotics: Mechanism of action: A review

    , Article Current Diabetes Reviews ; Volume 16, Issue 6 , 2020 , Pages 538-545 Homayouni, A ; Bagheri, N ; Mohammad Alizadeh Charandabi, S ; Kashani, N ; Mobaraki Asl, N ; Mirghafurvand, M ; Asgharian, H ; Ansari, F ; Pourjafar, H ; Sharif University of Technology
    Bentham Science Publishers  2020
    Abstract
    Background: Gestational Diabetes Mellitus (GDM) is a health problem that is increasing around the world. Introduction: Prevention of GDM, rather than treatment, could have several benefits in terms of both health and economic cost. Even a slight reduction in maternal glucose in non-diabetic women, particularly in women at high risk for GDM, may have significant benefits for pregnancy results and the future health of off-springs. Probiotics are a relatively new intervention, which are assessed by mothers’ metabolism, and can reduce blood sugar levels, prevent gestational diabetes and reduce the maternal and fetal complications resulting from it. The aim of this study was to review the studies... 

    The immunomodulatory effects of probiotics on respiratory viral infections: A hint for COVID-19 treatment?

    , Article Microbial Pathogenesis ; Volume 148 , November , 2020 Mahooti, M ; Miri, S. M ; Abdolalipour, E ; Ghaemi, A ; Sharif University of Technology
    Academic Press  2020
    Abstract
    Respiratory virus infections are among the most prevalent diseases in humans and contribute to morbidity and mortality in all age groups. Moreover, since they can evolve fast and cross the species barrier, some of these viruses, such as influenza A and coronaviruses, have sometimes caused epidemics or pandemics and were associated with more serious clinical diseases and even mortality. The recently identified Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a Public Health Emergency of International concern and has been associated with rapidly progressive pneumonia. To ensure protection against emerging respiratory tract... 

    Delta waves differently modulate high frequency components of EEG oscillations in various unconsciousness levels

    , Article 29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society, EMBC'07, Lyon, 23 August 2007 through 26 August 2007 ; 2007 , Pages 1294-1297 ; 05891019 (ISSN); 1424407885 (ISBN); 9781424407880 (ISBN) Molaee Ardekani, B ; Senhadji, L ; Shamsollahi, M. B ; Wodey, E ; Vosoughi Vahdat, B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2007
    Abstract
    In this paper we investigate the modulation properties of high frequency EEG activities by delta waves during various depth of anesthesia. We show that slow and fast delta waves (0-2 Hz and 2-4 Hz respectively) and high frequency components of the EEG (8-20 Hz) are correlated with each other and there is a kind of phase locking between them that varies with depth of anesthesia. Our analyses show that maximum amplitudes of high frequency components of the EEG signal are appeared in different phases of slow and fast delta waves when the concentration of Desflurane and Propofol anesthetic agents varies in a patient. There are some slight differences in using slow and fast components of delta... 

    Flash photo stimulation of human neural stem cells on graphene/TiO 2 heterojunction for differentiation into neurons

    , Article Nanoscale ; Volume 5, Issue 21 , 2013 , Pages 10316-10326 ; 20403364 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2013
    Abstract
    For the application of human neural stem cells (hNSCs) in neural regeneration and brain repair, it is necessary to stimulate hNSC differentiation towards neurons rather than glia. Due to the unique properties of graphene in stem cell differentiation, here we introduce reduced graphene oxide (rGO)/TiO2 heterojunction film as a biocompatible flash photo stimulator for effective differentiation of hNSCs into neurons. Using the stimulation, the number of cell nuclei on rGO/TiO2 increased by a factor of ∼1.5, while on GO/TiO2 and TiO2 it increased only ∼48 and 24%, respectively. Moreover, under optimum conditions of flash photo stimulation (10 mW cm-2 flash intensity and 15.0 mM ascorbic acid in... 

    Pyrolytic carbon coating for cytocompatibility of titanium oxide nanoparticles: A promising candidate for medical applications

    , Article Nanotechnology ; Volume 23, Issue 4 , 2012 ; 09574484 (ISSN) Behzadi, S ; Imani, M ; Yousefi, M ; Galinetto, P ; Simchi, A ; Amiri, H ; Stroeve, P ; Mahmoudi, M ; Sharif University of Technology
    2012
    Abstract
    Nanoparticles for biomedical use must be cytocompatible with the biological environment that they are exposed to. Current research has focused on the surface functionalization of nanoparticles by using proteins, polymers, thiols and other organic compounds. Here we show that inorganic nanoparticles such as titanium oxide can be coated by pyrolytic carbon (PyC) and that the coating has cytocompatible properties. Pyrolization and condensation of methane formed a thin layer of pyrolytic carbon on the titanium oxide core. The formation of the PyC shell retards coalescence and sintering of the ceramic phase. Our MTT assay shows that the PyC-coated particles are cytocompatible at employed doses  

    Chitosan-gelatin sheets as scaffolds for muscle tissue engineering

    , Article Artificial Cells, Nanomedicine and Biotechnology ; Volume 43, Issue 2 , Nov , 2015 , Pages 124-132 ; 21691401 (ISSN) Hajiabbas, M ; Mashayekhan, S ; Nazaripouya, A ; Naji, M ; Hunkeler, D ; Rajabi Zeleti, S ; Sharifiaghdas, F ; Sharif University of Technology
    Informa Healthcare  2015
    Abstract
    Hydrogels made of natural polymers [chitosan (CS) and gelatin (G)] have been prepared having mechanical properties similar to those of muscle tissues. In this study, the effect of polymer concentration and scaffold stiffness on the behavior of seeded muscle-derived cells (MDCs) on the CS-G hydrogel sheets has been evaluated. Both variables were found to be important in cell viability. Viability was assessed by observation of the cell morphology after 1 day as well as a 14-day MTT assay. The CS-G hydrogels were characterized using Fourier transform infrared (FTIR) analysis, which revealed evidences of strong intermolecular interactions between CS and G. Hydrogel samples with intermediate... 

    Optimization of operating parameters for efficient photocatalytic inactivation of Escherichia coli based on a statistical design of experiments

    , Article Water Science and Technology ; Volume 71, Issue 6 , 2015 , Pages 823-831 ; 02731223 (ISSN) Feilizadeh, M ; Alemzadeh, I ; Delparish, A ; Karimi Estahbanati, M. R ; Soleimani, M ; Jangjou, Y ; Vosoughi, A ; Sharif University of Technology
    IWA Publishing  2015
    Abstract
    In this work, the individual and interaction effects of three key operating parameters of the photocatalytic disinfection process were evaluated and optimized using response surface methodology (RSM) for the first time. The chosen operating parameters were: reaction temperature, initial pH of the reaction mixture and TiO2 P-25 photocatalyst loading. Escherichia coli concentration, after 90 minutes irradiation of UV-A light, was selected as the response. Twenty sets of photocatalytic disinfection experiments were conducted by adjusting operating parameters at five levels using the central composite design. Based on the experimental data, a semi-empirical expression was established and applied... 

    In vitro release behavior and cytotoxicity of doxorubicin-loaded gold nanoparticles in cancerous cells

    , Article Biotechnology Letters ; Volume 32, Issue 5 , May , 2010 , Pages 649-654 ; 01415492 (ISSN) Asadishad, B ; Vossoughi, M ; Alamzadeh, I ; Sharif University of Technology
    2010
    Abstract
    Doxorubicin (DOX), a common cancer chemotherapeutics, was conjugated to folate-modified thiolated-polyethylene glycol-functionalized gold nanoparticles. The in vitro, controlled release behavior of DOX-loaded gold nanoparticles was observed using porous dialysis membranes (cut-off = 2 kDa). DOX-loaded gold nanoparticles had higher cytotoxicity for folate-receptor-positive cells (KB cells) compared to folate-receptor-negative cells (A549 cells) which were 48 and 62% viable for 10 μM doxorubicin, respectively. This indicates the potential of these nano-carriers for targeted-delivery. In addition, healthy cell viability was 69% for 10 μM free doxorubicin whereas for the same content of drug in... 

    Synthesis and cyto-genotoxicity evaluation of graphene on mice spermatogonial stem cells

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 146 , 2016 , Pages 770-776 ; 09277765 (ISSN) Hashemi, E ; Akhavan, O ; Shamsara, M ; Daliri, M ; Dashtizad, M ; Farmany, A ; Sharif University of Technology
    Elsevier  2016
    Abstract
    The present study analyzed the dose-dependent cyto- and genotoxicity of graphene oxide and reduced graphene oxide on spermatogonial stem cells (SSCs) for the first time. The results showed that graphene oxide significantly increased oxidative stress at concentrations of 100 and 400 μg/ml, while low concentrations did not have a significant effect. In addition, according to the MTT assay, the cell number decreased in high-concentration (100 and 400 μg/ml) graphene oxide-treated samples compared to untreated cells. However, a reduced graphene-treated sample demonstrated a significant increase in cell number. Moreover, microscopic analysis found high concentrations of graphene nanosheets in... 

    Smart liposomal drug delivery for treatment of oxidative stress model in human embryonic stem cell-derived retinal pigment epithelial cells

    , Article International Journal of Pharmaceutics ; Volume 548, Issue 1 , 2018 , Pages 62-72 ; 03785173 (ISSN) Behroozi, F ; Abdkhodaie, M. J ; Sadeghi Abandansari, H ; Satarian, L ; Kazemi Ashtiani, M ; Jaafari, M. R ; Baharvand, H ; Sharif University of Technology
    Abstract
    Oxidative stress has been implicated in the progression of age-related macular degeneration (AMD). Treatment with antioxidants seems to delay progression of AMD. In this study, we suggested an antioxidant delivery system based on redox-sensitive liposome composed of phospholipids and a diselenide centered alkyl chain. Dynamic light scattering assessment indicated that the liposomes had an average size of 140 nm with a polydispersity index below 0.2. The percentage of encapsulation efficiency of the liposomes was calculated by high-performance liquid chromatography. The carriers were loaded with N-acetyl cysteine as a model antioxidant drug. We demonstrated responsiveness of the nanocarrier...