Loading...
Search for:
drug-formulation
0.006 seconds
Design and physicochemical characterization of lysozyme loaded niosomal formulations as a new controlled delivery system
, Article Pharmaceutical Chemistry Journal ; Volume 53, Issue 10 , 2020 , Pages 921-930 ; Ehsani, P ; Cohan, R. A ; Sardari, S ; Akbarzadeh, I ; Bakhshandeh, H ; Norouzian, D ; Sharif University of Technology
Springer
2020
Abstract
Lysozyme loaded niosomes containing various molar ratios of two kinds of surfactants were prepared and the properties of these niosomal formulations were studied. The results revealed that the size of niosomes varied between 240.06 ± 32.41 and 895.2 ± 20.84 nm. Formulations with the lowest size and no precipitation had entrapment efficiencies ranging from 60.644 ± 3.310 to 66.333 ± 1.98%. Their controlled release profiles after 48 h were 15.67, 20.67 and 31.50%. After 2 months, the most stable formulation in terms of size, PDI, zeta potential, and entrapment efficiency was used to study the secondary structures of lysozyme in niosomal and free forms. Lysozyme loaded niosome and lysozyme...
Preparation and investigation the release behaviour of wax microspheres loaded with salicylic acid
, Article Journal of Microencapsulation ; Volume 26, Issue 6 , 2009 , Pages 485-492 ; 02652048 (ISSN) ; Taghizadeh, M ; Seifkordi, A. A ; Ardjmand, M ; Sharif University of Technology
2009
Abstract
Salicylic acid-beeswax microspheres were prepared by melt dispersion technique. The effects of formulation parameters on the microscopic characteristic, drug loading and cumulative amount of released drug were investigated by experimental design. Results showed that all of the microparticles were spherical with porous surfaces. The average size of microspheres was 2448 m, the drug content was in the range of 2245 and the encapsulation efficiency was 4693. Drug loading was influenced by emulsification speed as a main factor. All the microspheres had a burst release initially. The emulsifier concentration did not have a significant effect on drug release. The release behaviour of microspheres...
Preparation and evaluation of bioactive and compatible starch based superabsorbent for oral drug delivery systems
, Article Journal of Drug Delivery Science and Technology ; Volume 23, Issue 5 , 2013 , Pages 511-517 ; 17732247 (ISSN) ; Ebrahimi, A. A ; Barzegar, S ; Sharif University of Technology
2013
Abstract
Novel types of highly swelling hydrogels (superabsorbent) were prepared by grafting crosslinked poly acrylic acid-co-2-hydroxyethylmetacrylate (PAA-co-HEMA) chains onto starch through a free radical polymerization method. The effect of grafting variables (i.e., concentration of methylenebisacrylamide (MBA), acrylic acid/2-hydroxy methymetacrylate (AA/HEMA) weight ratio, ammonium persulfate (APS), starch, neutralization percent, were systematically optimized to achieve a hydrogel with a maximum swelling capacity. The superabsorbent (SAP) formation was confirmed by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The controlled-release behavior of...
Breakup of microdroplets in asymmetric T junctions
, Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 87, Issue 5 , 2013 ; 15393755 (ISSN) ; Salari, A ; Shafii, M. B ; Sharif University of Technology
2013
Abstract
Symmetric T junctions have been used widely in microfluidics to generate equal-sized microdroplets, which are applicable in drug delivery systems. A newly proposed method for generating unequal-sized microdroplets at a T junction is investigated theoretically and experimentally. Asymmetric T junctions with branches of identical lengths and different cross sections are utilized for this aim. An equation for the critical breakup of droplets at asymmetric T junctions and one for determining the breakup point of droplets are developed. A good agreement was observed between the theories (present and previous) and the experiments
Niosomal delivery of simvastatin to MDA-MB-231 cancer cells
, Article Drug Development and Industrial Pharmacy ; Volume 46, Issue 9 , 2020 , Pages 1535-1549 ; Saremi Poor, A ; Yaghmaei, S ; Norouzian, D ; Noorbazargan, H ; Saffar, S ; Ahangari Cohan, R ; Bakhshandeh, H ; Sharif University of Technology
Taylor and Francis Ltd
2020
Abstract
Objective: The objective of this study was to use nano-niosomal formulations to deliver simvastatin as a poor-water soluble drug into breast cancer cells. Significance: Our study focused on the problem associated with poor water-soluble drugs which have significant biological activity in vivo. Methods: Different niosomal formulations of simvastatin were prepared and characterized in terms of morphology, size, encapsulation efficiency (EE), and release kinetic. Antiproliferative activity and the mechanism were assessed by quantitative real-time PCR and flow cytometry. Moreover, confocal microscopy was employed to analyze the cell uptake of simvastatin loaded niosomes to the cancerous cells....
A correlative model to predict in vivo AUC for nanosystem drug delivery with release rate-limited absorption
, Article Journal of Pharmacy and Pharmaceutical Sciences ; Volume 15, Issue 4 , 2012 , Pages 583-591 ; 14821826 (ISSN) ; Mohammadi, K ; Mohammadi, G ; Valizadeh, H ; Barzegar Jalali, A ; Adibkia, K ; Nokhodchi, A ; Sharif University of Technology
2012
Abstract
Purpose. Drug release from nanosystems at the sites of either absorption or effect biophase is a major determinant of its biological action. Thus, in vitro drug release is of paramount importance in gaining insight for the systems performance in vivo. Methods. A novel in vitro in vivo correlation, IVIVC, model denoted as double reciprocal area method was presented and applied to 19 drugs from 55 nano formulations with total 336 data, gathered from literature. Results. The proposed model correlated the in vitro with in vivo parameters with overall error of 12.4 ± 3.9%. Also the trained version of the model predicted the test formulations with overall error of 15.8 ± 3.7% indicating the...
Optimized doxycycline-loaded niosomal formulation for treatment of infection-associated prostate cancer: An in-vitro investigation
, Article Journal of Drug Delivery Science and Technology ; Volume 57 , 2020 ; Tavakkoli Yaraki, M ; Bourbour, M ; Noorbazargan, H ; Lajevardi, A ; Sadat Shilsar, S. M ; Heidari, F ; Mousavian, S. M ; Sharif University of Technology
Editions de Sante
2020
Abstract
Developing drug delivery systems with both antibacterial and anti-cancer effects is of importance in the treatment process of infection-associated cancers, especially prostate cancer. In this study, Span 60, Tween 60, and cholesterol were used to formulate doxycycline-loaded niosomes as a promising drug carrier system as either antibacterial or anticancer formulation. The formulation process was optimized by multi-objective response surface methodology (RSM), and then characterized. The developed niosomal formulation showed great storage stability for up to 2 weeks. In addition, they showed remarkable drug release in acidic solution (pH = 3) compared with physiological pH (7.4). The in-vitro...
Fabrication of chitosan/poly(lactic acid)/graphene oxide/TiO2 composite nanofibrous scaffolds for sustained delivery of doxorubicin and treatment of lung cancer
, Article International Journal of Biological Macromolecules ; Volume 110 , 2018 , Pages 416-424 ; 01418130 (ISSN) ; Moradkhani, M ; Beheshti, H ; Irani, M ; Aliabadi, M ; Sharif University of Technology
Elsevier B.V
2018
Abstract
In this work, the synthesized graphene oxide/TiO2/doxorubicin (GO/TiO2/DOX) composites were loaded into the chitosan/poly(lactic acid) (PLA) solutions to fabricate the electrospun chitosan/PLA/GO/TiO2/DOX nanofibrous scaffolds via electrospinning process. The synthesized composites and nanofibers were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Three-factor three-level central composite design was used to determine the influence of PLA to chitosan ratio, TiO2/DOX content and GO/TiO2/DOX content on the release of DOX from nanofibrous scaffolds. Drug loading efficiency and drug release behavior from...
Preparation, physicochemical properties, in vitro evaluation and release behavior of cephalexin-loaded niosomes
, Article International Journal of Pharmaceutics ; Volume 569 , 2019 ; 03785173 (ISSN) ; Akbarzadeh, I ; Tavakkoli Yaraki, M ; Lajevardi, A ; Fatemizadeh, M ; Heidarpoor Saremi, L ; Sharif University of Technology
Elsevier B.V
2019
Abstract
In this study, optimized cephalexin-loaded niosomal formulations based on span 60 and tween 60 were prepared as a promising drug carrier system. The niosomal formulations were characterized using a series of techniques such as scanning electron microscopy, Fourier transformed infrared spectroscopy, dynamic light scattering, and zeta potential measurement. The size and drug encapsulation efficiency are determined by the type and composition of surfactant. The developed niosomal formulations showed great storage stability up to 30 days with low change in size and drug entrapment during the storage, making them potential candidates for real applications. Moreover, the prepared niosomes showed...
Niosome-encapsulated tobramycin reduced antibiotic resistance and enhanced antibacterial activity against multidrug-resistant clinical strains of Pseudomonas aeruginosa
, Article Journal of Biomedical Materials Research - Part A ; Volume 109, Issue 6 , 2021 , Pages 966-980 ; 15493296 (ISSN) ; Abolhassani Targhi, A ; Shamsi, F ; Heidari, F ; Salehi Moghadam, Z ; Mirzaie, A ; Behdad, R ; Moghtaderi, M ; Akbarzadeh, I ; Sharif University of Technology
John Wiley and Sons Inc
2021
Abstract
In the current study, niosome-encapsulated tobramycin based on Span 60 and Tween 60 was synthesized and its biological efficacies including anti-bacterial, anti-efflux, and anti-biofilm activities were investigated against multidrug resistant (MDR) clinical strains of Pseudomonas aeruginosa. The niosomal formulations were characterized using scanning electron microscopy, transmission electron microscopy, and dynamic light scattering measurement. The encapsulation efficiency was found to be 69.54% ±; 0.67. The prepared niosomal formulations had a high storage stability to 60 days with small changes in size and drug entrapment, which indicates that it is a suitable candidate for pharmaceutical...
A novel niosome formulation for encapsulation of anthocyanins and modelling intestinal transport
, Article Food Chemistry ; Volume 293 , 2019 , Pages 57-65 ; 03088146 (ISSN) ; Akay, S ; Sharifi, F ; Sevimli Gur, C ; Ongen, G ; Yesil Celiktas, O ; Sharif University of Technology
Elsevier Ltd
2019
Abstract
The bioavailability of drugs can be improved by regulating the structural properties, particularly lipoid systems, such as niosomes, can increase cellular uptake. Herein, we optimized double emulsion and niosomal formulations for encapsulating anthocyanin-rich black carrot extract. Nanoparticles obtained by selected formulation were characterized in terms of morphology, particle size, drug encapsulation efficiency, in vitro release and cytotoxicity. The optimum conditions for niosomal formulation were elicited as 30 mg of cholesterol, 150 mg of Tween 20 and feeding time of 1 min at a stirring rate of 900 rpm yielding the lowest average particle size of 130 nm. In vitro release data showed...
Simultaneous controlled release of 5-FU, DOX and PTX from chitosan/PLA/5-FU/g-C3N4-DOX/g-C3N4-PTX triaxial nanofibers for breast cancer treatment in vitro
, Article Colloids and Surfaces B: Biointerfaces ; Volume 179 , 2019 , Pages 495-504 ; 09277765 (ISSN) ; Hosseini, S ; Mahboobnia, K ; Boloursaz, L. A ; Moradi, M ; Irani, M ; Sharif University of Technology
Elsevier B.V
2019
Abstract
In the present study, the tri-layer nanofibers were synthesized via triaxial electrospinning process to control the sustained delivery of Doxorubicin (DOX), Paclitaxel (PTX) and 5- fluorouracil (5-FU) anticancer drugs from nanofibers. The 5-FU molecules were incorporated into the core solution (chitosan/polyvinyl alcohol (CS/PVA)) to fabricate the CS/PVA/5-FU inner layer of nanofibers. The intermediate layer was prepared from poly(lactic acid)/chitosan (PLA/CS) nanofibers. The DOX and PTX molecules were initially loaded into the g-C3N4 nanosheets and following were incorporated into the PLA/CS solution to fabricate the outer layer of nanofibers. The synthesized nanosheets and nanofibers were...
Design of experiment, preparation, and in vitro biological assessment of human amniotic membrane extract loaded nanoparticles
, Article Current Pharmaceutical Biotechnology ; Volume 21, Issue 3 , 2020 , Pages 256-267 ; Atyabi, F ; Khoshayand, M. R ; Mahbod, R ; Cohan, R. A ; Akbarzadeh, I ; Bakhshandeh, H ; Sharif University of Technology
Bentham Science Publishers
2020
Abstract
Background: Human amniotic membrane grafting could be potentially useful in ocular surface complications due to tissue similarity and the presence of factors that reduce inflammation, vascu-larization, and scarring. However, considerations like donor-derived infectious risk and the requirement of an invasive surgery limit the clinical application of such treatments. Moreover, the quick depletion of bioactive factors after grafting reduces the efficacy of treatments. Therefore, in the current study, the possibility of nano delivery of the bioactive factors extracted from the human amniotic membrane to the ocular surface was investigated. Materials and Methods: Nanoparticles were prepared...
Delivery of melittin-loaded niosomes for breast cancer treatment: an in vitro and in vivo evaluation of anti-cancer effect
, Article Cancer Nanotechnology ; Volume 12, Issue 1 , 2021 ; 18686958 (ISSN) ; Akbarzadeh, I ; Marzbankia, E ; Farid, M ; khaledi, L ; Reihani, A. H ; Javidfar, M ; Mortazavi, P ; Sharif University of Technology
BioMed Central Ltd
2021
Abstract
Background: Melittin, a peptide component of honey bee venom, is an appealing candidate for cancer therapy. In the current study, melittin, melittin-loaded niosome, and empty niosome had been optimized and the anticancer effect assessed in vitro on 4T1 and SKBR3 breast cell lines and in vivo on BALB/C inbred mice. "Thin-layer hydration method" was used for preparing the niosomes; different niosomal formulations of melittin were prepared and characterized in terms of morphology, size, polydispersity index, encapsulation efficiency, release kinetics, and stability. A niosome was formulated and loaded with melittin as a promising drug carrier system for chemotherapy of the breast cancer cells....
Challenges and future prospects for the delivery of biologics: oral mucosal, pulmonary, and transdermal routes
, Article AAPS Journal ; Volume 19, Issue 3 , 2017 , Pages 652-668 ; 15507416 (ISSN) ; Fathe, K. R ; Brunaugh, A ; Ferrati, S ; Li, S ; Montenegro Nicolini, M ; Mousavikhamene, Z ; McConville, J. T ; Prausnitz, M. R ; Smyth, H. D. C ; Sharif University of Technology
Springer New York LLC
2017
Abstract
Biologic products are large molecules such as proteins, peptides, nucleic acids, etc., which have already produced many new drugs for clinical use in the last decades. Due to the inherent challenges faced by biologics after oral administration (e.g., acidic stomach pH, digestive enzymes, and limited permeation through the gastrointestinal tract), several alternative routes of administration have been investigated to enable sufficient drug absorption into systemic circulation. This review describes the buccal, sublingual, pulmonary, and transdermal routes of administration for biologics with relevant details of the respective barriers. While all these routes avoid transit through the...