Loading...
Search for: drug-solubility
0.015 seconds

    Supercritical carbon dioxide utilization in drug delivery: Experimental study and modeling of paracetamol solubility

    , Article European Journal of Pharmaceutical Sciences ; Volume 177 , 2022 ; 09280987 (ISSN) Bagheri, H ; Notej, B ; Shahsavari, S ; Hashemipour, H ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In the present study, the solubility of paracetamol in supercritical CO2 is measured at temperatures between 311 and 358 K and pressures between 95 and 265 bar. It was shown that the solubility of paracetamol through a static solubility measurement method was between 0.3055 × 10−6 to 16.3582 × 10−6 based on mole fraction. The obtained experimental solubility data revealed the direct effect of pressure on the paracetamol experimental data, while the temperature has a dual effect of both increasing and decreasing effect considering the shifting point known as crossover pressure which was measured to be around 110 bar for paracetamol. Besides, two theoretical approaches were applied to predict... 

    Carbon nanotubes part II: A remarkable carrier for drug and gene delivery

    , Article Expert Opinion on Drug Delivery ; Volume 12, Issue 7 , 2015 , Pages 1089-1105 ; 17425247 (ISSN) Karimi, M ; Solati, N ; Ghasemi, A ; Estiar, M. A ; Hashemkhani, M ; Kiani, P ; Mohamed, E ; Saeidi, A ; Taheri, M ; Avci, P ; Aref, A. R ; Amiri, M ; Baniasadi, F ; Hamblin, M. R ; Sharif University of Technology
    Informa Healthcare  2015
    Abstract
    Introduction: Carbon nanotubes (CNT) have recently been studied as novel and versatile drug and gene delivery vehicles. When CNT are suitably functionalized, they can interact with various cell types and are taken up by endocytosis.Areas covered: Anti-cancer drugs cisplatin and doxorubicin have been delivered by CNT, as well as methotrexate, taxol and gemcitabine. The delivery of the antifungal compound amphotericin B and the oral administration of erythropoietin have both been assisted using CNT. Frequently, targeting moieties such as folic acid, epidermal growth factor or various antibodies are attached to the CNT-drug nanovehicle. Different kinds of functionalization (e.g., polycations)... 

    Graphene oxide functionalized with oxygen-rich polymers as a pH-sensitive carrier for co-delivery of hydrophobic and hydrophilic drugs

    , Article Journal of Drug Delivery Science and Technology ; Volume 56 , 2020 Pourjavadi, A ; Asgari, S ; Hosseini, S. H ; Sharif University of Technology
    Editions de Sante  2020
    Abstract
    In this work, a novel carrier based-on modified graphene oxide was designed for co-delivery of hydrophobic and hydrophilic anticancer drugs (curcumin (Cur) and doxorubicin (DOX) as the model of drugs). The hydroxyl groups at the edges of graphene oxide (GO) sheets were used as the initiation sites for growing poly(epichlorohydrin) (PCH) chains. Then, hyperbranched polyglycerol (HPG) was grafted on the hydroxyl end groups of PCH (PCH-g-HPG). Pendant chlorines in the main chain of GO-PCH-g-HPG were replaced with hydrazine. The modification of GO sheets with oxygen-rich polymers increased water solubility of graphene oxide. Doxorubicin was loaded onto the nanocarrier by covalent bonding with... 

    Electrostatic accumulation and determination of triclosan in ultrathin carbon nanoparticle composite film electrodes

    , Article Analytica Chimica Acta ; Volume 593, Issue 1 , 2007 , Pages 117-122 ; 00032670 (ISSN) Amiri, M ; Shahrokhian, S ; Psillakis, E ; Marken, F ; Sharif University of Technology
    2007
    Abstract
    A film composed of carbon nanoparticles and poly(diallyldimethylammonium chloride) or CNP-PDDAC is formed in a layer-by-layer deposition process at tin-doped indium oxide (ITO) substrates. Excess positive binding sites within this film in aqueous phosphate buffer at pH 9.5 are quantified by adsorption of iron(III)phthalocyanine tetrasulfonate and indigo carmine. Both anionic redox systems bind with Langmuirian characteristics (K ≈ 105 mol-1 dm3) and show electrochemical reactivity throughout the film at different thicknesses. Therefore, the electrical conductivity in CNP-PDDAC films is good and the positive binding sites are approximately 140 pmol cm-2 per layer. Structural instability of... 

    PH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents

    , Article Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology ; Volume 8, Issue 5 , 2016 , Pages 696-716 ; 19395116 (ISSN) Karimi, M ; Eslami, M ; Sahandi Zangabad, P ; Mirab, F ; Farajisafiloo, N ; Shafaei, Z ; Ghosh, D ; Bozorgomid, M ; Dashkhaneh, F ; Hamblin, M. R ; Sharif University of Technology
    Wiley-Blackwell  2016
    Abstract
    In recent years miscellaneous smart micro/nanosystems that respond to various exogenous/endogenous stimuli including temperature, magnetic/electric field, mechanical force, ultrasound/light irradiation, redox potentials, and biomolecule concentration have been developed for targeted delivery and release of encapsulated therapeutic agents such as drugs, genes, proteins, and metal ions specifically at their required site of action. Owing to physiological differences between malignant and normal cells, or between tumors and normal tissues, pH-sensitive nanosystems represent promising smart delivery vehicles for transport and delivery of anticancer agents. Furthermore, pH-sensitive systems... 

    Fabrication and evaluation of bioresorbable scaffolds for interventional cardiology application with sufficient drug release

    , Article Iranian Journal of Basic Medical Sciences ; Volume 25, Issue 3 , 2022 , Pages 372-382 ; 20083866 (ISSN) Sadeghabadi, A ; Sadrnezhaad, S. K ; Asefnejad, A ; Nemati, N. H ; Sharif University of Technology
    Mashhad University of Medical Sciences  2022
    Abstract
    Objective(s): Bioresorbable scaffolds have been advocated as the new generation in interventional cardiology because they could provide temporary scaffolds and then disappear with resorption. Although, the available stents in clinical trials exhibited biosafety, efficacy, no death, and no apparent thrombosis, Mg-substrate degradation on drug release has not been investigated. Materials and Methods: Therefore, more research has been needed to legitimize the replacement of current stents with Mg-based stents. UV-Vis spectrophotometer, scanning electron microscope (SEM), X-ray diffraction (XRD), pH measurement, H2 evolution, and corrosion tests determined the change in hybrid properties and... 

    Green synthesis of PEG-coated MIL-100(Fe) for controlled release of dacarbazine and its anticancer potential against human melanoma cells

    , Article International Journal of Pharmaceutics ; Volume 618 , 2022 ; 03785173 (ISSN) Barjasteh, M ; Vossoughi, M ; Bagherzadeh, M ; Pooshang Bagheri, K ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this study, the potential of using MIL-100(Fe) metal–organic framework (MOF) for loading and controlling the release of dacarbazine (DTIC) was evaluated for in vitro treatment of melanoma. The drug loading was performed during the green synthesis of MIL-100(Fe) in an aqueous media without using any harmful solvents, to obtain MIL-DTIC. The surface of this structure was then coated with polyethylene glycol (PEG) in the same aqueous solution to synthesize MIL-DTIC-PEG. The synthesized samples were characterized using various methods. Their release profile was studied in phosphate-buffered saline (PBS) and simulated cutaneous medium (SCM). The cytotoxicity of DTIC and its nano-MOF... 

    Simultaneous controlled release of 5-FU, DOX and PTX from chitosan/PLA/5-FU/g-C3N4-DOX/g-C3N4-PTX triaxial nanofibers for breast cancer treatment in vitro

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 179 , 2019 , Pages 495-504 ; 09277765 (ISSN) Habibi Jouybari, M ; Hosseini, S ; Mahboobnia, K ; Boloursaz, L. A ; Moradi, M ; Irani, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In the present study, the tri-layer nanofibers were synthesized via triaxial electrospinning process to control the sustained delivery of Doxorubicin (DOX), Paclitaxel (PTX) and 5- fluorouracil (5-FU) anticancer drugs from nanofibers. The 5-FU molecules were incorporated into the core solution (chitosan/polyvinyl alcohol (CS/PVA)) to fabricate the CS/PVA/5-FU inner layer of nanofibers. The intermediate layer was prepared from poly(lactic acid)/chitosan (PLA/CS) nanofibers. The DOX and PTX molecules were initially loaded into the g-C3N4 nanosheets and following were incorporated into the PLA/CS solution to fabricate the outer layer of nanofibers. The synthesized nanosheets and nanofibers were...