Loading...
Search for: dry-condition
0.005 seconds

    Effect of drying conditions on the catalytic performance, structure, and reaction rates over the Fe-Co-Mn/MgO catalyst for production of light olefins

    , Article Bulletin of Chemical Reaction Engineering & Catalysis ; Volume 13, Issue 1 , 2018 , Pages 97-112 ; 19782993 (ISSN) Abdouss, M ; Arsalanfar, M ; Mirzaei, N ; Zamani, Y ; Sharif University of Technology
    Diponegoro University  2018
    Abstract
    The MgO-supported Fe-Co-Mn catalysts, prepared using co-precipitation procedure, were tested for production of light olefins via CO hydrogenation reaction. The effect of a range of drying conditions including drying temperature and drying time on the structure and catalytic performance of Fe-Co-Mn/MgO catalyst for Fischer-Tropsch synthesis was investigated in a fixed bed micro-reactor under the same operational conditions of T = 350 °C, P = 1 bar, H2/CO = 2/1, and GHSV = 4500 h-1. It was found that the catalyst dried at 120 °C for 16 h has shown the best catalytic performance for CO hydrogenation. Furthermore, the effect of drying conditions on different surface reaction rates was also... 

    Ultrasonic-assisted grinding of Ti6Al4V alloy

    , Article Procedia CIRP ; Volume 1, Issue 1 , 2012 , Pages 353-358 ; 22128271 (ISSN) Nik, M. G ; Movahhedy, M. R ; Akbari, J ; Sharif University of Technology
    2012
    Abstract
    In conventional grinding of hard to cut materials such as Ti6Al4V alloys, surface burning, redeposition and adhesion of chips to the grinding wheel and workpeice occur visibly unless it is carried out at low speeds and with high volume of cutting fluid. Ultrasonic assisted grinding is an efficient machining process which improves the machinability of hard-to-cut materials by changing the kinematics of the process. In this research, the effect of imposition of ultrasonic vibration on the grinding of Ti6Al4V alloy is studied. Longitudinal vibration at ultrasonic frequency range (20 kHz) is applied on the workpiece and machining forces and surface roughness are compared between conventional... 

    Tribological characterization of electroless Ni-10% P coatings at elevated test temperature under dry conditions

    , Article International Journal of Advanced Manufacturing Technology ; Volume 62, Issue 9-12 , October , 2012 , Pages 1063-1070 ; 02683768 (ISSN) Masoumi, F ; Ghasemi, H. R ; Ziaei, A. A ; Shahriari, D ; Sharif University of Technology
    Springer  2012
    Abstract
    An experimental study of wear characteristics of electroless Ni-10% P coating sliding against hard AISI 52100 steel pin is investigated. Experiments are carried out at room and 550°C temperatures. Heat treatment effects on tribological behavior of this coating are studied. The wear surface and the microstructure of the coatings are analyzed using optical microscopy, scanning electron microscopy, energy dispersion analysis X-ray, and microhardness testing equipment. It is observed that the forming of continuous oxide film on contacting surfaces of pin and disk improves wear resistance and decreases friction coefficient of the Ni-10% P coating. The results indicate that the wear resistance of... 

    Storage of Ag nanoparticles in pore-arrays of SU-8 matrix for antibacterial applications

    , Article Journal of Physics D: Applied Physics ; Volume 42, Issue 13 , 2009 ; 00223727 (ISSN) Akhavan, O ; Abdolahad, M ; Asadi, R ; Sharif University of Technology
    2009
    Abstract
    Silver nanoparticles (NPs) stored in pore-arrays (pa) SU-8 photoresist layer were utilized as an antibacterial nanocomposition against E. coli bacteria. The pa-SU-8 matrix was fabricated by an optical interference lithography method resulting in small pores with a diameter of ∼50 nm and a depth of ∼100 nm. The Ag NPs were deposited on the soft polymeric matrix at different drying temperatures of 50 and 90 °C. X-ray photoelectron spectroscopy showed that the deposited silver NPs were substantially in the metallic state, independent from the drying condition. However, the concentration of the immobilized Ag NPs on the film surface increased (by a factor of 2.5) at the higher drying... 

    Experimental analysis on the material properties of A356.0 aluminum alloy surface nanostructured by severe shot peening

    , Article Journal of Materials Engineering and Performance ; Volume 29, Issue 1 , 2020 , Pages 143-154 Farrahi, G. H ; Jafarzadeh, H ; Esmaeili, M. A ; Sharif University of Technology
    Springer  2020
    Abstract
    The effects of severe shot-peening process and formation of a nanostructured surface layer on mechanical properties of A356.0 alloy were investigated in this paper. X-ray diffraction analyses revealed that the average size of near-surface grains in severe shot-peened specimens is 75.8 nm. Three types of disk-shaped specimens, non-treated, conventionally shot-peened, and severely shot-peened were subjected to pin-on-disk wear test in the dry condition, in different loading and sliding speeds. Shot-peening process increases both hardness and roughness of the surface, and these two factors have, respectively, positive and negative effects on wear resistance. However, because of high-density... 

    Preparation of uniform TiO2 nanostructure film on 316L stainless steel by sol-gel dip coating

    , Article Applied Surface Science ; Volume 255, Issue 20 , 2009 , Pages 8328-8333 ; 01694332 (ISSN) Barati, N ; Sani, M. A. F ; Ghasemi, H ; Sadeghian, Z ; Mirhoseini, S. M. M ; Sharif University of Technology
    2009
    Abstract
    Sol was prepared by the mixing of tetra-η-butyle titanat, ethyl aceto acetate, and ethanol in an optimized condition. Polished 316L specimens were coated with the sol by dip-coating method. The influences of drying condition, withdrawal speed, calcination temperature, addition of dispersant, and pH of sol on TiO2 nanostructure coating were investigated. Choosing of alcohol as drying atmosphere hindered the crack formation. The relation between coating thickness and withdrawal speed was evaluated. The optimum temperature to create a uniform distribution of nanoparticles of anatase was derived as 400 °C. Average roughness of coating was found about 10.61 nm by AFM analysis. Dispersant addition...