Loading...
Search for: ducted-fan
0.007 seconds

    Robustness investigation of a ducted-fan aerial vehicle control, using linear, adaptive, and model predictive controllers

    , Article International Journal of Advanced Mechatronic Systems ; Volume 6, Issue 2-3 , 2015 , Pages 108-117 ; 17568412 (ISSN) Emami, S. A ; Banazadeh, A ; Sharif University of Technology
    Inderscience Publishers  2015
    Abstract
    A comparison of three common controllers for stabilising a vertical take-off and landing air vehicle is presented. RMIT is a small sized tail-sitter ducted fan air vehicle with a particular configuration layout, multiple control surfaces, low weight, and high-speed flight capability. The main problem here is control effectiveness at low flight speeds and transition manoeuvres because of the inherent instability. In the current study, a comprehensive nonlinear model is firstly developed for RMIT, followed by a validation process. Subsequently, linear, adaptive and model predictive controllers are designed in vertical flight. Based on the simulation results, it is shown that the linear... 

    Control effectiveness investigation of a ducted-fan aerial vehicle using model predictive controller

    , Article International Conference on Advanced Mechatronic Systems, ICAMechS ; 2014 , pp. 532-537 Banazadeh, A ; Emami, S. A ; Sharif University of Technology
    Abstract
    Special attention is given to vertical takeoff and landing air vehicles due to their unique capabilities and versatile missions. The main problem here is control effectiveness at low flight speeds and transition maneuvers because of the inherent instability. RMIT is a small sized tail-sitter ducted fan air vehicle with a particular configuration layout, multiple control surfaces, low weight, and high-speed flight capability. In the current study, a comprehensive nonlinear model is firstly developed for RMIT, followed by a validation process. This model consists of all parts including aerodynamic forces and moments, control surfaces term together with the gravity and driving fan forces.... 

    Model reference adaptive control design for a ducted fan air vehicle in vertical plane

    , Article Applied Mechanics and Materials, 21 November 2012 through 22 November 2012 ; Volume 225 , November , 2012 , Pages 331-337 ; 16609336 (ISSN) ; 9783037855065 (ISBN) Fadaeian, E ; Banazadeh, A ; Sharif University of Technology
    2012
    Abstract
    Ducted fan aerial vehicles have drawn many attentions in the world because of their successful involvement in non-traditional reconnaissance and surveillance missions. However, due to inherent dynamic uncertainties as well as inconsistent responses, significant control challenges are still to be addressed. In this study, a non-linear dynamic model for ducted fan is firstly proposed to be employed for control design. This model is then validated by performing a series of standard simulation scenarios. Afterwards, an adaptive control method, named as model reference is utilized to design perfect controllers in hover as well as vertical flight. The capability of the adaptive laws to update the... 

    Attitude Control of a Tail-sitter UAV with a Ducted Fan in Transition Phase Using the Robust Control Approach

    , M.Sc. Thesis Sharif University of Technology Valian, Saeed (Author) ; Nobahari, Hadi (Supervisor) ; Mohammadzaman, Iman (Supervisor)
    Abstract
    The purpose of this thesis is to control the attitude of a tail-sitter UAV in transition phase (from hover to cruise and vice versa). This UAV has a pusher shrouded fan propulsive. Due to the fact that in transition phase the dynamic model of the UAV is associated with a significant uncertainties and the stability is more important than the performance, robust controller has been used. The propulsion part of the tail-sitter UAV can be assumed as a separate ducted fan UAV. In the first step both UAVs have been designed. then, in order to have an accurate model of UAV, the dynamics of actuators, including the engine and servo motor, has been identified. Then, modeling and verification for both... 

    Aerodynamic Design of 100 kW Transonic Ducted Fan

    , M.Sc. Thesis Sharif University of Technology Shayan Fakhr, Atefeh (Author) ; Ghorbanian, Kaveh (Supervisor)
    Abstract
    The purpose of this research is the aerodynamic design of a 100 kW transonic ducted fan. Today, the aviation industry is moving towards the design of electric driven aircraft propulsion. Transonic ducted fans are one of the viable options that have been used in medium and heavy aircrafts due to their high specific power. In this research, the meanline model has been used for the initial design. By applying the design constraints, design limitations, design and functional parameters, the initial design point is found and then a sensitivity analysis is performed with respect to the effective design parameters to obtain the optimal design point. For the initial design of the transonic ducted... 

    Design And Implementation of the Flight Controller For Take-Off and Landing of a Ducted-Fan Uav Using Linear Quadratic Differential Game Regulator

    , M.Sc. Thesis Sharif University of Technology Nemati, Ali (Author) ; Nobahari, Hadi (Supervisor)
    Abstract
    The purpose of this thesis is to design and implement a controller for a Ducted-Fan in the landing and take-off phase using a linear quadratic tuning method based on differential game theory. This is a control method with a robust control approach and tries to see all the disturbances and unmodulated dynamics in the form of the second actor and produce a control command according to the worst behavior of the second actor. For this purpose, 6 DOF Ducted-Fan have been modeled. then The proposed controller is designed for a linearized model around the hover point. In the next step, the performance of the proposed controller is compared with the SlidingMode Controller. Also, the parameters of... 

    Frequency response analysis for dynamic model identification and control of a ducted fan aerial vehicle in hover

    , Article Applied Mechanics and Materials, Neptun-Olimp ; Volume 332 , 2013 , Pages 56-61 ; 16609336 (ISSN) ; 9783037857335 (ISBN) Effati, M ; Banazadeh, A ; Sharif University of Technology
    2013
    Abstract
    System Identification is a key technology for the development and integration of modern engineering systems including unconventional flying vehicles. These systems are highly parametric with complex dynamics and nonlinearities. Ducted fans are special class of these vehicles that can take off vertically, hover and cruise at very low speed. In this paper, an exact equivalent linear system is found from the non-linear dynamic model of a ducted fan by use of frequency response identification. Here, power spectral density analysis is performed, using CIFER software, to evaluate the input-output responses in hover and to derive the transfer functions based on the coherence criterion. Then,...