Loading...
Search for: dynamic-buckling
0.011 seconds

    Dynamic buckling of columns considering shear deformation and rotary inertia

    , Article Proceedings of the Eight International Conference on Civil and Structural Engineering Computing, Vienna, 19 September 2001 through 21 September 2001 ; 2001 , Pages 75-76 ; 0948749768 (ISBN) Ghorashi, M ; Sharif University of Technology
    2001
    Abstract
    The individual and combined effect of shear deformation and rotary inertia on the columns was discussed. It was shown that the shear deformation effect always tends to reduce the buckling load. It was observed that rotary inertia for supported columns has no effect on the buckling load. The critical buckling load of perfect columns subjected to static axial loading was calculated using the Euler-Bernoulli theory  

    Dynamic Buckling of Laminated Composite Beams Resting on Elastic Foundation under Thermal and Mechanical Load

    , M.Sc. Thesis Sharif University of Technology Eshrati, Mojtaba (Author) ; Kouchakzadeh, Mohammad Ali (Supervisor)
    Abstract
    In this study, static and dynamic buckling of laminated composite beams resting on an elastic foundation under thermal and mechanical load is studied. Beam is resting on an elastic foundation with hardening/softening term. Nonlinear governing equations are obtained based on the energy method and are solved via the multi-term Galerkin method and the Newton-Raphson numerical method. Critical dynamic load is estimated by the Hoff Simitses criterion. The results are validated with the results of available articles in this field. In the following, the effects of different parameters of the problem on the results are examined. Results reveal that for a sufficiently stiff softening elastic... 

    Buckling behavior of the anchored steel tanks under horizontal and vertical ground motions using static pushover and incremental dynamic analyses

    , Article Thin-Walled Structures ; Volume 112 , 2017 , Pages 173-183 ; 02638231 (ISSN) Sobhan, M. S ; Rahimzadeh Rofooei, F ; Khajeh Ahmad Attari, N ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    This paper investigates the static and dynamic buckling of an anchored cylindrical steel tank subjected to horizontal and vertical ground acceleration. The buckling capacity of the tank is estimated using static pushover (SPO) and incremental dynamic analyses (IDA). Appropriate load patterns due to the horizontal and vertical components of ground excitations are utilized for SPO analyses. The buckling capacity curves and critical buckling loads computed using SPO analyses are compared to those obtained from IDA. A proper vertical to horizontal acceleration ratio (av/ah) for SPO analysis is proposed that leads to good agreement between SPO and IDA results. © 2017  

    Dynamic instability characteristics of advanced grid stiffened conical shell with laminated composite skins

    , Article Journal of Sound and Vibration ; Volume 488 , 2020 Bohlooly, M ; Kouchakzadeh, M. A ; Mirzavand, B ; Noghabi, M ; Sharif University of Technology
    Academic Press  2020
    Abstract
    Dynamical instability characteristics of sandwich truncated conical shell are investigated. The three-layered shell is composed of advanced grid stiffened core and laminated composite skins. The core maybe made of three different fiber paths. The conical shell with simply-supported ends is subjected to two different types of time-dependent axial compressions. The equations of motion and compatibility are derived by considering Kirchhoff-Love assumptions and von Karman relations. The solution procedure is divided to two steps. First, the terms consisting of spatial derivatives are eliminated by applying a stress function and following the Galerkin method. Second, the terms with temporal... 

    A modified molecular structural mechanics model for the buckling analysis of single layer graphene sheet

    , Article Solid State Communications ; Volume 225 , 2016 , Pages 12-16 ; 00381098 (ISSN) Firouz Abadi, R. D ; Moshrefzadeh Sany, H ; Mohammadkhani, H ; Sarmadi, M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In this paper the classical molecular structural mechanics model of graphene is modified to improve its accuracy for the analysis of transverse deformations. To this aim, a sample graphene sheet under a uniform pressure is modeled by both molecular dynamics and molecular structural mechanics methods. The sectional properties of the beam element, by which the covalent bonds are modeled, are modified such that the difference between the results of the molecular mechanics model and molecular dynamics simulation is minimized. Using this modified model, the buckling behavior of graphene under a uniform edge pressure is investigated subjected to different boundary conditions for both zigzag and... 

    3D buckling assessment of cylindrical steel silos of uniform thickness under seismic action

    , Article Thin-Walled Structures ; Volume 131 , 2018 , Pages 654-667 ; 02638231 (ISSN) Moazezi Mehretehran, A ; Maleki, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This paper investigates the dynamic buckling behavior of steel silos subjected to horizontal base excitations. The elastic-plastic buckling resistance of three silos with different aspect ratios is estimated using Incremental Dynamic Analyses (IDA). Accordingly, the critical base shear, base moment and the peak ground acceleration (PGA) at the buckling instant are calculated. Moreover, the additional normal pressures induced from bulk solids on silo walls are evaluated and compared with those of Eurocode 8. The results obtained suggest that slender silos are more vulnerable to buckling failure, while squatter silos represent a considerably higher resistance under same seismic conditions. ©... 

    Seismic Response and Buckling behavior of Aboveground Cylindrical Steel Tanks

    , Ph.D. Dissertation Sharif University of Technology Sobhan, Mohammad Saeed (Author) ; Rahimzadeh Rofooei, Fayaz (Supervisor) ; Khaje Ahmad Attari, Nader (Co-Advisor)
    Abstract
    In this study, the seismic response of aboveground, anchored cylindrical steel tanks subjected to horizontal and vertical ground acceleration is investigated. The buckling capacity of the steel tanks is estimated using static pushover (SPO) and incremental dynamic analyses (IDA). Finite element models of a broad tank and a tall tank with height to diameter ratios (H/D) of 0.40, 0.80 and with a liquid level of 90% of the height of the cylinder were used in this study. Appropriate load patterns due to the horizontal and vertical components of ground excitations are utilized for SPO analyses. The influence of the vertical component of ground acceleration on buckling capacity curve of the tank... 

    A new high performance semi-active bracing system

    , Article Engineering Structures ; Volume 28, Issue 14 , 2006 , Pages 1972-1982 ; 01410296 (ISSN) Golafshani, A. A ; KabiriRahani, E ; Tabeshpour, M. R ; Sharif University of Technology
    2006
    Abstract
    Structural control under seismic excitation is becoming an important problem in earthquake engineering. Among several control systems, semi-active control is usually possible and efficient. In the conventional bracing systems it is assumed that the braces buckle under little compressive forces. In this research a semi-active on-off brace strategy is implemented to improve the conventional braces performance. A new completely tensile ribbed bracing system (RBS) has been developed to use the whole capacity of the member. In the proposed system the buckling of compressive member is prevented using a ribbed shape cylinder. RBS causes a permanent-stiffness-presence system that leads to less...