Loading...
Search for: dynamic-disjoining-pressure
0.004 seconds

    Dynamics of electrostatic interaction and electrodiffusion in a charged thin film with nanoscale physicochemical heterogeneity: Implications for low-salinity waterflooding

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 650 , 2022 ; 09277757 (ISSN) Pourakaberian, A ; Mahani, H ; Niasar, V ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The slow kinetics of wettability alteration toward a more water-wetting state by low-salinity waterflooding (LSWF) in oil-brine-rock (OBR) systems is conjectured to be pertinent to the electrokinetic phenomena in the thin brine film. We hypothesize that the nanoscale physicochemical heterogeneities such as surface roughness and surface charge heterogeneity at the rock/brine interface control further the dynamics of electrodiffusion and electrostatic disjoining pressure (Πel), thus the time-scale and the magnitude of the low salinity effect (LSE). In this regard, film-scale computational fluid dynamics (CFD) simulations were performed. The coupled Poisson-Nernst-Planck (PNP) equations were... 

    Dynamic Simulation of Wettability Alteration Induced by Low-Salinity-Effect: Study of Phenomena within Thin Water Film

    , M.Sc. Thesis Sharif University of Technology Pourakaberian, Arash (Author) ; Mahani, Hassan (Supervisor) ; Joekar Niasar, Vahid (Co-Supervisor)
    Abstract
    Recent experimental studies have demonstrated that the lowering of brine could alter the wettability of the oil-brine-rock systems from an oil-wetting state toward a more water-wetting state. This so-called “Low-salinity effect” (LSE) is one of the main effects of the enhanced oil recovery technology based on low-salinity waterflooding. “Double layer expansion” (DLE) in the thin brine film is proposed as the principal mechanism of this phenomenon. Nonetheless, the role of the electrical behavior of the oil/brine and rock/brine interfaces on the kinetics and dynamics of this process is not well understood. Moreover, since most of the previous works have either dealt with a thin film at... 

    The impact of the electrical behavior of oil-brine-rock interfaces on the ionic transport rate in a thin film, hydrodynamic pressure, and low salinity waterflooding effect

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 620 , 2021 ; 09277757 (ISSN) Pourakaberian, A ; Mahani, H ; Niasar, V ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Wettability alteration is the principal low-salinity-effect (LSE) in many oil-brine-rock (OBR) systems. Our recent experimental results have demonstrated that wettability alteration by low salinity is slow. It is expected that the electrical behavior of oil/brine and rock/brine interfaces and the water film geometry control both the transient hydrodynamic pressure, and the time-scale of ionic transport in the film, thus the kinetics and degree of wettability alteration. In this paper, the electro-diffusion process induced by the imposed ionic strength gradient is simulated by solving Poisson-Nernst-Planck equations in a water film bound between two charged surfaces, using a finite...