Loading...
Search for: dynamic-mechanical-property
0.005 seconds

    Inverse dynamics control of needle in prostate brachytherapy

    , Article 2012 IEEE International Conference on Industrial Technology, ICIT 2012, Proceedings ; 2012 , Pages 510-515 ; 9781467303422 (ISBN) Maghsoudi, A ; Jahed, M ; Sharif University of Technology
    IEEE  2012
    Abstract
    Needle insertion into the soft tissue has been the subject of many studies during the last decade, while needle control has become a crucial training tool, evaluating surgeon's skills in such critical incision. This study considers a model-based dynamics equation for the needle movement through the soft tissue. In the proposed model, the force distribution along the needle shaft is estimated through the use of tissue deformation data and tissue model. A novel algorithm for the needle control simulation is also proposed based on the developed dynamics equation of the needle movement. To point out the role of mechanical properties of the soft tissue, an inverse dynamics control method is used... 

    Investigation into dynamic strain aging behaviour in high carbon steel

    , Article Ironmaking and Steelmaking ; Volume 37, Issue 2 , Jul , 2010 , Pages 155-160 ; 03019233 (ISSN) Kohandehghan, A. R ; Sadeghi, A. R ; Akhgar, J. M ; Serajzadeh, S ; Sharif University of Technology
    2010
    Abstract
    In this work, the phenomenon of dynamic strain aging in a high carbon steel is studied and different initial microstructures including fine and coarse pearlite structures are considered. Tensile tests at different temperatures and strain rates are performed to evaluate the occurrence of dynamic strain aging and mechanical properties as well as to calculate apparent activation energies for onset and termination of dynamic strain aging. The results show that dynamic strain aging occurs for both microstructures while the initial microstructures alters the activation energies for appearance and termination of this phenomenon. The microstructural studies illustrate that a combination of cementite... 

    Network structure and mechanical properties of polydimethylsiloxane filled with nanodiamond – Effect of degree of silanization of nanodiamond

    , Article Composites Science and Technology ; Volume 142 , 2017 , Pages 227-234 ; 02663538 (ISSN) Hajiali, F ; Shojaei, A ; Sharif University of Technology
    Abstract
    Reinforcement of polydimethylsiloxane (PDMS) was investigated using untreated nanodiamond (uND) and silane functionalized ND (sND) at various degrees of silanization. Scanning electron microscopy revealed an improved dispersion of ND in PDMS by silanization. The incorporation of uND and sNDs enhanced tensile strength up to 45% and 70%, respectively; however, greater improvement was observed for sNDs at very low concentrations, e.g. 0.2 wt%. The much improvement in crosslinking density, analyzed by Flory-Rehner model and Mooney-Rivlin plot, and interfacial interaction, characterized by Kraus and Cunneen-Russell plots, was also observed for sNDs. Interestingly, it was found that the extent of... 

    Needle dynamics modelling and control in prostate brachytherapy

    , Article IET Control Theory and Applications ; Volume 6, Issue 11 , July , 2012 , Pages 1671-1681 ; 17518644 (ISSN) Maghsoudi, A ; Jahed, M ; Sharif University of Technology
    2012
    Abstract
    Although 'Needle steering' is considered a challenge in needle insertion strategies, needle control becomes a crucial training tool for evaluating surgeon's skills in such critical incision. In this study, a model-based dynamics equation for the needle movement through the soft tissue is developed. In the proposed control scheme, the force estimation calculated through the simulated tissue deformation data and the dynamic finite element as the tissue model, is used as the force feedback. To point out the role of mechanical properties of the soft tissue, an inverse dynamics control method is used to demonstrate the system performance in presence of uncertainty in tissue mechanical parameters.... 

    Physico-mechanical properties and thermal stability of thermoset nanocomposites based on styrene-butadiene rubber/phenolic resin blend

    , Article Materials Science and Engineering A ; Volume 527, Issue 4-5 , 2010 , Pages 917-926 ; 09215093 (ISSN) Shojaei, A ; Faghihi, M ; Sharif University of Technology
    Abstract
    Effect of organoclay (OC) on the performance of styrene-butadiene rubber (SBR)/phenolic resin (PH) blend prepared by two-roll mill was investigated. The influence of OC content ranging between 2.5 and 30 phr on the performance of SBR/PH was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), interfacial energy analysis, tensile, dynamic mechanical, swelling, cure rheometry and thermogravimetric analysis (TGA). It was found that the OC is mainly localized in the SBR phase of SBR/PH blend through the kinetically favored mechanism relevant to rubber chains. The results also demonstrated the positive role of PH on the dispersion of OC. Both PH and OC showed... 

    Investigation of in situ prepared polypropylene/clay nanocomposites properties and comparing to melt blending method

    , Article Materials and Design ; Volume 31, Issue 1 , 2010 , Pages 76-84 ; 02641275 (ISSN) Baniasadi, H ; Ramazani S. A. A ; Javan Nikkhah, S ; Sharif University of Technology
    Abstract
    The morphological, physical and mechanical properties of polypropylene/clay nanocomposites (PPCNs) were prepared by in situ polymerization are investigated. Non-modified scmectite type clay (e.g. bentonite) was used to prepare bi-supported Ziegler-Natta catalyst of TiCl4/Mg(OEt)2/clay. Exfoliated PPCNs were obtained by in situ intercalative polymerization of propylene using produced bi-supported catalyst. X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) micrograph were used to assess the clay morphology and dispersion of clay. The crystalline structures of PPCNs were characterized by differential scanning calorimetry (DSC). The mechanical properties of PPCNs were...