Loading...
Search for: dynamic-stability-analysis
0.009 seconds

    Energy absorption of the strengthened viscoelastic multi-curved composite panel under friction force

    , Article Archives of Civil and Mechanical Engineering ; Volume 21, Issue 4 , 2021 ; 16449665 (ISSN) Shao, Y ; Zhao, Y ; Gao, J ; Habibi, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    This study investigated FG carbon nanotubes filled composites, which are promising metamaterials that can be useful in the energy absorption field. This structure can absorb energy through elastic deformation. For this issue, absorbed energy and dynamic stability analysis of the FG-CNTRC curved panel surrounded by a non-polynomial viscoelastic substrate using three-dimensional poroelasticity theory is investigated. For stability of the structure after vibrating, the viscoelastic substrate as the non-polynomial viscoelastic model is presented. The curved panel comprises multilayer carbon nanotubes (CNT) which are uniformly distributed in all layers of facing sheets; however, the system’s... 

    Nonlinear vibrations and stability analysis of a rotor on high-static-low-dynamic-stiffness supports using method of multiple scales

    , Article Aerospace Science and Technology ; Volume 63 , 2017 , Pages 259-265 ; 12709638 (ISSN) Navazi, H. M ; Hojjati, M ; Sharif University of Technology
    Elsevier Masson SAS  2017
    Abstract
    This paper presents the vibration and stability analyses of an unbalanced rotor mounted on high-static-low-dynamic-stiffness supports. The stiffness of the supports is modeled as symmetric of cubic order. Then a second-order multiple scales method is used for studying the primary resonance of the system. The types of singular points are investigated and phase-plane of the system is plotted using analytical and numerical methods. The difference between analytical and numerical solutions is less than 2 percent. © 2017 Elsevier Masson SAS  

    Dynamic stability analysis of a sandwich beam with magnetorheological elastomer core subjected to a follower force

    , Article Acta Mechanica ; Volume 231, Issue 9 , 2020 , Pages 3715-3727 Rokn Abadi, M ; Yousefi, M ; Haddadpour, H ; Sadeghmanesh, M ; Sharif University of Technology
    Springer  2020
    Abstract
    In the present study, the effect of using magnetorheological elastomer materials and a magnetic field on the dynamic stability of a sandwich beam under a follower force has been investigated for various boundary conditions. The considered sandwich beam consists of a magnetorheological elastomer core constrained by elastic layers. The structural governing equations are derived using Hamilton’s principle and solved by the finite element method. The validity of the result is examined by comparison with those in the literature. The effects of variation in the parameters such as magnetic field intensity and the thickness of the layers on the stability of the sandwich beam are studied. Finally,... 

    Stability analysis for design improvement of bio-inspired flapping wings by energy method

    , Article Aerospace Science and Technology ; Volume 111 , 2021 ; 12709638 (ISSN) Kamankesh, Z ; Banazadeh, A ; Sharif University of Technology
    Elsevier Masson s.r.l  2021
    Abstract
    This study attempts to reach a broad understanding of the stability properties of nonlinear time-periodic flapping wing structures. Two bio-system models, Hummingbird (6DOF) and Hawkmoth (3DOF) are developed for this purpose. Initial analysis on the Hummingbird model, which is based on the Floquet theory, kinetic energy integration, and phase portrait technique, indicates lack of stability in hover flight. Kinetic energy integration is carried out on the extended model of the Hawkmoth to find the domain of attraction and increase the level of stability by varying the design parameters. Here, the hinge location of the wing, flapping amplitude, flapping frequency, and mean angle of attack are... 

    Dynamic stability analysis of single walled carbon nanocone conveying fluid

    , Article Computational Materials Science ; Volume 113 , 2016 , Pages 123-132 ; 09270256 (ISSN) Rasouli Gandomani, M ; Noorian, M. A ; Haddadpour, H ; Fotouhi, M. M ; Sharif University of Technology
    Elsevier  2016
    Abstract
    This report aims the study of dynamic stability of single walled carbon nanocone for some axial length conditions and declination angles of 60°, 120°and 240°. For dynamic stability analysis of Single Walled Carbon Nanocone (SWCNC), the mode shapes and frequencies of the carbon nanocone are extracted using the molecular mechanics approach. The mechanical properties of SWCNC were obtained by the Molecular Mechanics (MM) method. The obtained parameters are used for extraction of the conical shell virtual model of nanocone with the same dimensions. The equations of coupled fluid-structural dynamics of SWCNC are derived using the modal expansion for the structural displacements of the conical... 

    Investigation on dynamic stability and aeroelastic characteristics of composite curved pipes with any yawed angle

    , Article Composite Structures ; Volume 284 , 2022 ; 02638223 (ISSN) Chen, F ; Chen, J ; Duan, R ; Habibi, M ; Khadimallah, M. A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    For the first time, in the current work, a dynamic stability analysis of a tilted curved pipe in a supersonic airflow under thermal loading is presented. The heat-transfer continuum problem is used for simulating the thermal environment conditions. The tilted pipe is reinforced by carbon nanotube agglomerations (CNTAs). For simulating the displacement fields of the current structure, Quasi-2D refined high order shear deformation theory is studied. The verification segment is divided into two parts. In the first and second sections, the credibility of the results of this study are confirmed by the results extracted using COMSOL multiphysics software and published articles in the literature,...