Loading...
Search for: ecg-dynamical-models
0.005 seconds

    ECG denoising using angular velocity as a state and an observation in an Extended Kalman Filter framework

    , Article Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS ; 2012 , Pages 2897-2900 ; 1557170X (ISSN) ; 9781424441198 (ISBN) Akhbari, M ; Shamsollahi, M. B ; Jutten, C ; Coppa, B ; Sharif University of Technology
    2012
    Abstract
    In this paper an efficient filtering procedure based on Extended Kalman Filter (EKF) has been proposed. The method is based on a modified nonlinear dynamic model, previously introduced for the generation of synthetic ECG signals. The proposed method considers the angular velocity of ECG signal, as one of the states of an EKF. We have considered two cases for observation equations, in one case we have assumed a corresponding observation to angular velocity state and in the other case, we have not assumed any observations for it. Quantitative evaluation of the proposed algorithm on the MIT-BIH Normal Sinus Rhythm Database (NSRDB) shows that an average SNR improvement of 8 dB is achieved for an... 

    A model-based Bayesian framework for ECG beat segmentation

    , Article Physiological Measurement ; Volume 30, Issue 3 , 2009 , Pages 335-352 ; 09673334 (ISSN) Sayadi, O ; Shamsollahi, M. B ; Sharif University of Technology
    2009
    Abstract
    The study of electrocardiogram (ECG) waveform amplitudes, timings and patterns has been the subject of intense research, for it provides a deep insight into the diagnostic features of the heart's functionality. In some recent works, a Bayesian filtering paradigm has been proposed for denoising and compression of ECG signals. In this paper, it is shown that this framework may be effectively used for ECG beat segmentation and extraction of fiducial points. Analytic expressions for the determination of points and intervals are derived and evaluated on various real ECG signals. Simulation results show that the method can contribute to and enhance the clinical ECG beat segmentation performance. ©... 

    Model-based ECG fiducial points extraction using a modified extended Kalman filter structure

    , Article 2008 1st International Symposium on Applied Sciences in Biomedical and Communication Technologies, ISABEL 2008, Aalborg, 25 October 2008 through 28 October 2008 ; December , 2008 ; 9781424426478 (ISBN) Sayadi, O ; Shamsollahi, M. B ; Sharif University of Technology
    2008
    Abstract
    This paper presents an efficient algorithm based on a nonlinear dynamical model for the precise extraction of the characteristic points of electrocardiogram (ECG), which facilitates the HRV analysis. Determining the precise position of the waveforms of an ECG signal is complicated due to the varying amplitudes of its waveforms, the ambiguous and changing form of the complex and morphological variations with unknown sources of drift. A model-based approach handles these complications; therefore a method based on the usage of this concept in an extended Kalman filter structure has been developed. The fiducial points are detected using both the parameters of Gaussian-functions of the model, and... 

    Model-based fiducial points extraction for baseline wandered electrocardiograms

    , Article IEEE Transactions on Biomedical Engineering ; Volume 55, Issue 1 , 2008 , Pages 347-351 ; 00189294 (ISSN) Sayadi, O ; Shamsollahi, M. B ; Sharif University of Technology
    2008
    Abstract
    A fast algorithm based on the nonlinear dynamical model for the electrocardiogram (ECG) is presented for the precise extraction of the characteristic points of these signals with baseline drift. Using the adaptive bionic wavelet transform, the baseline wander is removed efficiently. In fact by the means of the bionic wavelet transform, the resolution in the time-frequency domain can be adaptively adjusted not only by the signal frequency but also by the signal instantaneous amplitude and its first-order differential, which results in a better baseline wander cancellation. At the next step the parameters of the model are chosen to have the least square error with the original ECG. Determining... 

    ECG denoising and compression using a modified extended Kalman filter structure

    , Article IEEE Transactions on Biomedical Engineering ; Volume 55, Issue 9 , September , 2008 , Pages 2240-2248 ; 00189294 (ISSN) Sayadi, O ; Shamsollahi, M. B ; Sharif University of Technology
    2008
    Abstract
    This paper presents efficient denoising and lossy compression schemes for electrocardiogram (ECG) signals based on a modified extended Kalman filter (EKF) structure. We have used a previously introduced two-dimensional EKF structure and modified its governing equations to be extended to a 17-dimensional case. The new EKF structure is used not only for denoising, but also for compression, since it provides estimation for each of the new 15 model parameters. Using these specific parameters, the signal is reconstructed with regard to the dynamical equations of the model. The performances of the proposed method are evaluated using standard denoising and compression efficiency measures. For...