Loading...
Search for: ecosystem-restoration
0.005 seconds

    Remediation of trapped DNAPL enhanced by SDS surfactant and silica nanoparticles in heterogeneous porous media: experimental data and empirical models

    , Article Environmental Science and Pollution Research ; Volume 27, Issue 3 , 2020 , Pages 2658-2669 Ramezanzadeh, M ; Khasi, S ; Fatemi, M ; Ghazanfari, M. H ; Sharif University of Technology
    Springer  2020
    Abstract
    The remediation of nonaqueous phase liquids (NAPLs) enhanced by surfactant and nanoparticles (NP) has been investigated in numerous studies. However, the role of NP-assisted surfactants in the dissolution process is still not well discussed. Besides, there is a lack of empirical dissolution models considering the effects of initial residual saturation Strap, NAPL distribution, and surfactant concentration in NAPL-aqueous phase systems. In this work, micromodel experiments are conducted to quantify mass transfer coefficients for different injected aqueous phases including deionized water, SDS surfactant solutions, and NP-assisted solutions with different levels of concentrations and flow... 

    40-years of lake urmia restoration research: review, synthesis and next steps

    , Article Science of the Total Environment ; Volume 832 , 2022 ; 00489697 (ISSN) Parsinejad, M ; Rosenberg, D. E ; Ghale, Y. A. G ; Khazaei, B ; Null, S. E ; Raja, O ; Safaie, A ; Sima, S ; Sorooshian, A ; Wurtsbaugh, W. A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Public concern over environmental issues such as ecosystem degradation is high. However, restoring coupled human-natural systems requires integration across many science, technology, engineering, management, and governance topics that are presently fragmented. Here, we synthesized 544 peer-reviewed articles published through September 2020 on the desiccation and nascent recovery of Lake Urmia in northwest Iran. We answered nine questions of scientific and popular interest about causes, impacts, stabilization, recovery, and next steps. We find: (1) Expansion of irrigated agriculture, dam construction, and mismanagement impacted the lake more than temperature increases and precipitation... 

    Evaluation of trichloroethylene degradation by starch supported Fe/Ni nanoparticles via response surface methodology

    , Article Water Science and Technology ; Volume 73, Issue 4 , 2016 , Pages 935-946 ; 02731223 (ISSN) Nikroo, R ; Alemzadeh, I ; Vossoughi, M ; Haddadian, K ; Sharif University of Technology
    IWA Publishing 
    Abstract
    In this study, degradation of trichloroethylene (TCE), a chlorinated hydrocarbon, using starch supported Fe/Ni nanoparticles was investigated. The scanning electron microscope images showed applying water soluble starch as a stabilizer for the Fe/Ni nanoparticles tended to reduce agglomeration and discrete particle. Also the mean particle diameter reduced from about 70 nm (unsupported Fe/Ni nanoparticle) to about 30 nm. Effects of three key independent operating parameters including initial TCE concentration (10.0-300.0 mg L-1), initial pH (4.00-10.00) and Fe0 dosage (0.10-2.00) g L-1 on TCE dechlorination efficiency in 1 hour were analysed by employing response surface methodology (RSM).... 

    Unveiling the catalytic ability of carbonaceous materials in Fenton-like reaction by controlled-release CaO2 nanoparticles for trichloroethylene degradation

    , Article Journal of Hazardous Materials ; Volume 416 , 2021 ; 03043894 (ISSN) Ali, M ; Tariq, M ; Sun, Y ; Huang, J ; Gu, X ; Ullah, S ; Nawaz, M. A ; Zhou, Z ; Shan, A ; Danish, M ; Lyu, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Carbonaceous materials (CMs) have been applied extensively for enhancing the catalytic performance of environmental catalysts, however, the self-catalytic mechanism of CMs for groundwater remediation is rarely investigated. Herein, we unveiled the catalytic ability of various CMs via Fe(III) reduction through polyvinyl alcohol-coated calcium peroxide nanoparticles (PVA@nCP) for trichloroethylene (TCE) removal. Among selected CMs (graphite (G), biochar (BC) and activated carbon (AC)), BC and AC showed enhancement of TCE removal of 89% and 98% via both adsorption and catalytic degradation. BET and SEM analyses showed a higher adsorption capacity of AC (27.8%) than others. The generation of... 

    Unveiling the catalytic ability of carbonaceous materials in Fenton-like reaction by controlled-release CaO2 nanoparticles for trichloroethylene degradation

    , Article Journal of Hazardous Materials ; Volume 416 , 2021 ; 03043894 (ISSN) Ali, M ; Tariq, M ; Sun, Y ; Huang, J ; Gu, X ; Ullah, S ; Nawaz, M. A ; Zhou, Z ; Shan, A ; Danish, M ; Lyu, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Carbonaceous materials (CMs) have been applied extensively for enhancing the catalytic performance of environmental catalysts, however, the self-catalytic mechanism of CMs for groundwater remediation is rarely investigated. Herein, we unveiled the catalytic ability of various CMs via Fe(III) reduction through polyvinyl alcohol-coated calcium peroxide nanoparticles (PVA@nCP) for trichloroethylene (TCE) removal. Among selected CMs (graphite (G), biochar (BC) and activated carbon (AC)), BC and AC showed enhancement of TCE removal of 89% and 98% via both adsorption and catalytic degradation. BET and SEM analyses showed a higher adsorption capacity of AC (27.8%) than others. The generation of...