Loading...
Search for: eddy-viscosities
0.006 seconds

    Navier-Stokes Equations in the Whole Space with an Eddy Viscosity

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Mehrad (Author) ; Hesaraki, Mahmoud (Supervisor)
    Abstract
    We study the Navier-Stokes equations with an extra Eddy viscosity term in the whole space . We introduce a suitable regularized system for which we prove the existence of a regular solution defined for all time. We prove that when the regularizing parameter goes to zero, the solution of the regularized system converges to a turbulent solution of the initial system. In the first chapter, we have dedicated the necessary preliminaries and then in the second chapter, we have introduced the types of solutions. The third chapter introduces the necessary tools and their properties, with the help of which in the next chapter we have been able to make estimates and obtain their extensions to prove... 

    An analytical investigation of transient imperfectly expanded turbulent jet

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 236, Issue 14 , 2022 , Pages 3057-3063 ; 09544100 (ISSN) Ghahremani, A ; Aramfard, M ; Saidi, M. H ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    Supersonic turbulent high-pressure jet flows, which are discharging in low-pressure quiescent ambient, are recognized as imperfectly expanded turbulent jet. Steady-state imperfectly expanded jet flow has been already studied analytically; however, the transient flow has not been thoroughly studied. In the present study, the transient imperfectly expanded jet flow with focus on fuel spray in combustion is investigated analytically employing two-step separation of variables method and Fourier-Bessel expansion. The results are validated using available experimental data. The effects of different parameters such as eddy viscosity and pressure ratio on the behavior of the jet are studied. Results... 

    Simulation of a density current turbulent flow employing different RANS models- a comparative study

    , Article 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 7 January 2008 through 10 January 2008 ; 2008 ; 9781563479373 (ISBN) Mehdizadeh, A ; Firoozabadi, B ; Sherif, A ; Sharif University of Technology
    2008
    Abstract
    The accuracy of Reynolds averaged Navier-Stokes (RANS) turbulence models to predict the behavior of two-dimensional (2-D) density current has been examined. In this work, a steady density current is simulated by the κ -ε , κ -ε RNG, two-layer κ -ε and modified v 2̄ - f models. All models are compared with available experimental data. Density current with uniform velocity and concentration enters a channel via a sluice gate into a lighter ambient fluid and moves forward down-slope. The eddy-viscosity concept cannot accurately simulate this flow because of two stress production structures in it. Results show that all isotropic models have a weak outcome for this current, but with improving the... 

    Fast spectral solutions of the double-gyre problem in a turbulent flow regime

    , Article Applied Mathematical Modelling ; Volume 66 , 2019 , Pages 745-767 ; 0307904X (ISSN) Naghibi, S. E ; Karabasov, S. A ; Jalali, M. A ; Sadati, S. M. H ; Sharif University of Technology
    Elsevier Inc  2019
    Abstract
    Several semi-analytical models are considered for a double-gyre problem in a turbulent flow regime for which a reference fully numerical eddy-resolving solution is obtained. The semi-analytical models correspond to solving the depth-averaged Navier–Stokes equations using the spectral Galerkin approach. The robustness of the linear and Smagorinsky eddy-viscosity models for turbulent diffusion approximation is investigated. To capture essential properties of the double-gyre configuration, such as the integral kinetic energy, the integral angular momentum, and the jet mean-flow distribution, an improved semi-analytical model is suggested that is inspired by the idea of scale decomposition... 

    Simulation of a density current turbulent flow employing different RANS models: a comparison study

    , Article Scientia Iranica ; Volume 16, Issue 1 , 2009 , Pages 53-63 ; 10263098 (ISSN) Mehdizadeh, A ; Firoozabadi, B ; Sharif University of Technology
    2009
    Abstract
    The accuracy of Reynolds Averaged Navier-Stokes (RANS) turbulence models to predict the behavior of 2-D density currents has been examined. In this work, a steady density current is simulated by the k - ε, k - ε RNG, two-layer k - ε and modified v̄2 - f model, all of which are compared with the experimental data. Density currents, with a uniform velocity and concentration, enter a channel via a sluice gate into a lighter ambient fluid and move forward down-slope. The eddy-viscosity concept cannot accurately simulate this flow because of two stress production structures found within it. Results show that all isotropic models have a weak outcome on this current, but by improving the ability of...