Loading...
Search for: effect-of-heat-treatments
0.008 seconds

    Effect of heat treatment cycle on the mechanical properties of machinable austempered ductile iron

    , Article 16th International Metallurgical and Materials Conference, METAL 2007, 22 May 2007 through 24 May 2007 ; 2007 Tadayon Saidi, M ; Baghersaee, N ; Varahram, N ; Hanumantha Rao, M ; Rao, G. V.S. N ; Sharif University of Technology
    TANGER spol. s r.o  2007
    Abstract
    ADI have been used for a wide variety of application in automotive,rail,and heavy engineering industry because of its excellent mechanical properties such as high strength with good ductility,good wear resistance,and good fatigue properties. The properties of austempered ductile iron are dependent on both chemistry and heat treatment, which has lead to invention of MADI (machinable austempered ductile iron). MADI is a new class of ductile iron with superior mechanical property than regular ductile iron with the same machinability characteristic. In this study Different cycles of austempering process (austenitization and austempering cycle) applied Due to the effect of heat treatment cycle on... 

    Effects of heat treatment and Y addition on the microstructure and mechanical properties of as-cast Mg–Si alloys

    , Article Materials Science and Engineering A ; Volume 859 , 2022 ; 09215093 (ISSN) Jamalpour, M ; Alizadeh, R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In Mg–Si alloys, both primary and eutectic Mg2Si particles normally appear with sharp edges, which can lead to weak mechanical properties as the result of stress concentration at the sharp corners of these brittle particles. Thus, it would be of great importance to modify the morphology of these particles. In this study, microstructure modification mechanisms after 0.5 wt% Y addition and heat treatment (HT) at 420 °C for 24 h are comprehensively studied in hypo-eutectic Mg–1Si and hyper-eutectic Mg–2Si alloys. Microstructural observations were performed using optical and scanning electron microscopy equipped with electron disperse spectroscopy, while phase analysis was done by X-ray... 

    Effect of aging treatment on the crushing behavior of aluminum 6061 alloy tube

    , Article Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications ; Volume 229, Issue 5 , Feb , 2015 , Pages 389-397 ; 14644207 (ISSN) Farshidi, M. H ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    The effect of heat treatment on the axial crushing behavior of thin-walled aluminum 6061 alloy tubes is studied in this work. For this purpose, thin-walled grooved specimens were subjected to different aging heat treatments to obtain different work hardening behaviors. Afterward, quasi-static axial compression tests were achieved to evaluate the crushing behavior. Additionally, a finite element method simulation was employed to determine the distributions of stress, strain, and imposed damage during axial compression. Results show that the optimum energy absorption characteristics can be obtained using moderated strain hardening exponent, ''n''. Low strain hardening exponent results in the... 

    The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets

    , Article Carbon ; Volume 48, Issue 2 , February , 2010 , Pages 509-519 ; 00086223 (ISSN) Akhavan, O ; Sharif University of Technology
    2010
    Abstract
    Graphene thin films with very low concentration of oxygen-containing functional groups were produced by reduction of graphene oxide nanosheets (prepared by using a chemical exfoliation) in a reducing environment and using two different heat treatment procedures (called one and two-step heat treatment procedures). The effects of heat treatment procedure and temperature on thickness variation of graphene platelets and also on reduction of the oxygen-containing functional groups of the graphene oxide nanosheets were studied by atomic force microscopy and X-ray photoelectron spectroscopy. While formation of the thin films composed of single-layer graphene nanosheets with minimum thickness of... 

    Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures

    , Article Journal of Materials Engineering and Performance ; Volume 25, Issue 2 , 2016 , Pages 382-389 ; 10599495 (ISSN) Habibi, M ; Hashemi, R ; Sadeghi, E ; Fazaeli, A ; Ghazanfari, A ; Lashini, H ; Sharif University of Technology
    Springer New York LLC 
    Abstract
    In the present study, a special heat treatment cycle (step quenching) was used to produce a dual-phase (DP) microstructure in low carbon steel. By producing this DP microstructure, the mechanical properties of the investigated steel such as yield stress, tensile strength, and Vickers hardness were increased 14, 55, and 38%, respectively. In order to investigate the effect of heat treatment on formability of the steel, Nakazima forming test was applied and subsequently finite element base modeling was used to predict the outcome on forming limit diagrams. The results show that the DP microstructure also has a positive effect on formability. The results of finite element simulations are in a... 

    The effect of heat treatment on properties of Ni–P–SiO2 nano-composite coating

    , Article Protection of Metals and Physical Chemistry of Surfaces ; Volume 52, Issue 3 , 2016 , Pages 492-499 ; 20702051 (ISSN) Sadreddini, S ; Afshar, A ; Sharif University of Technology
    Maik Nauka Publishing / Springer SBM 
    Abstract
    In this study, the surface morphology of Ni–P–SiO2 composite coating was investigated by field emission scanning electron microscopy (FESEM). The amount of SiO2 in the coating was examined by energy dispersive analysis of X-ray (EDX) and the Corrosion behavior of coating was evaluated by electrochemical impedance spectroscopy (EIS) and polarization techniques, showing the corrosion resistance of Ni–P–SiO2 diminished after heat treatment. The results showed that in the coating with 12.5 g/L SiO2, the coating hardness enhanced from 453VH to 980 VH before and after heat treatment. Furthermore, the wear behavior of the coating was analyzed before and after heat treatment  

    Evolution of microstructure and mechanical properties of Al-5 wt% Ti composite fabricated by P/M and hot extrusion: effect of heat treatment

    , Article Materials Science and Engineering A ; Volume 689 , 2017 , Pages 166-175 ; 09215093 (ISSN) Rezaei, A ; Madaah Hosseini, H. R ; Sharif University of Technology
    Abstract
    An Al-5 wt% Ti composite was fabricated via powder metallurgy and hot extrusion from initial pure Al and Ti powders. The effect of subsequent heat treatment at 600 °C for different time intervals on microstructure and mechanical properties was investigated. XRD and EDS analyses showed the in-situ formation of Al3Ti intermetallic. SEM micrographs demonstrated the formation of core-shell structured particles in Al matrix for composites heat treated up to moderate heating times (4 h). Generation of voids and pores in the heat treated composites was considered as a result of the Kirkendall effect. Mechanical properties of composites were studied by hardness and tensile testing methods at room... 

    Investigating the effect of heat treatment on the fracture toughness of a hot extruded Al–Ti composite produced by powder metallurgy route

    , Article Materials Science and Engineering A ; Volume 771 , 2020 Rezaei, A ; Madaah Hosseini, H. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    An Al-5 wt% Ti composite was fabricated via powder metallurgy technique and hot extrusion. The produced composite samples were heat-treated subsequently at 600 °C for various time durations of 0, 4 and 10 h to achieve different volume fractions of the intermetallic Al3Ti phase. Pure aluminum sample was produced as a benchmark specimen to be compared to the composite samples. SEM studies were used to investigate the microstructure of the composite samples, and it was revealed that core-shell structured particles were formed in the composite heat-treated for 4 h. Triple point bending test was performed on the single edge notched beam specimens of the heat-treated Al-5 wt% Ti composite and the... 

    Effects of heat treatment on the corrosion behavior and mechanical properties of biodegradable Mg alloys

    , Article Journal of Magnesium and Alloys ; Volume 10, Issue 7 , 2022 , Pages 1737-1785 ; 22139567 (ISSN) Mohammadi Zerankeshi, M ; Alizadeh, R ; Gerashi, E ; Asadollahi, M ; Langdon, T. G ; Sharif University of Technology
    National Engg. Reaserch Center for Magnesium Alloys  2022
    Abstract
    Biodegradable magnesium (Mg) alloys exhibit great potential for use as temporary structures in tissue engineering applications. Such degradable implants require no secondary surgery for their removal. In addition, their comparable mechanical properties with the human bone, together with excellent biocompatibility, make them a suitable candidate for fracture treatments. Nevertheless, some challenges remain. Fast degradation of the Mg-based alloys in physiological environments leads to a loss of the mechanical support that is needed for complete tissue healing and also to the accumulation of hydrogen gas bubbles at the interface of the implant and tissue. Among different methods used to... 

    Improved corrosion resistance and mechanical properties of biodegradable Mg-4Zn-xSr alloys: effects of heat treatment, Sr additions, and multi-directional forging

    , Article Journal of Materials Research and Technology ; Volume 20 , 2022 , Pages 3363-3380 ; 22387854 (ISSN) Gerashi, E ; Alizadeh, R ; Mahmudi, R ; Sharif University of Technology
    Elsevier Editora Ltda  2022
    Abstract
    The effects of Sr additions, heat treatment (T4 and T6), and multi-directional forging on the microstructural evolution, mechanical properties and biodegradability of Mg-4Zn-xSr alloys were investigated. Corrosion behavior of the alloys was evaluated by the polarization and hydrogen evolution tests. Shear punch and hardness tests were employed to determine the mechanical properties. It was found that mechanical properties and corrosion resistance of the as-cast Mg-4Zn alloy increased by 0.3 wt% Sr addition. However, further increasing the Sr content not only did not improve the mechanical strength, but also had detrimental effects on the corrosion resistance, due to the increased size and... 

    Effect of heat treatment parameters on microstructure, defects, and properties of Al-16Si-6Cu automotive shift fork: quantitative evaluation perspective

    , Article International Journal of Cast Metals Research ; Volume 35, Issue 1-3 , 2022 , Pages 60-72 ; 13640461 (ISSN) Farahany, S ; Abazari, M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    The current study investigated the effect of heat treatment parameters, including solution treatment temperature (STT), time, and quench rate, on the microstructure, defects, and hardness of an Al-16Si-6Cu Shift fork die-cast alloy. The changes in primary silicon particle (PSP) features were examined quantitatively by optical microscopy, coupled with image analysis and SEM equipped with EDS. The biggest PSPs (27 ± 8 µm) and the highest area fraction (23%) were found in the sample solution treated at 470°C and cooled in the furnace. The hardness value increased in heat-treated samples slightly (140–148 BHN). A lower STT (420°C) and a lower ageing time (1 h) are suitable conditions for the...