Loading...
Search for: elastohydrodynamics
0.007 seconds

    Suppression of dynamic pull-in instability in electrostatically actuated strain gradient beams

    , Article 2014 2nd RSI/ISM International Conference on Robotics and Mechatronics, ICRoM 2014 ; 2014 , pp. 155-160 ; ISBN: 9781479967438 Edalatzadeh, M. S ; Vatankhah, R ; Alasty, A ; Sharif University of Technology
    Abstract
    In this paper, vibration suppression of micro-or nano-scale beams subjected to nonlinear distributed electrostatic force is studied. For the sake of precision, we use the beam model derived from strain gradient elasticity theory aimed at prediction of size effect. In addition, the electrostatic force is considered with first order fringing field correction. The continuous model of the strain gradient beam is truncated by using Kantorovich method as a semi-analytical finite element method. A boundary control feedback law is proposed to suppress forced vibrations of the beam. Both measurements and actuations are taken place in the boundary to avoid spillover instabilities. Simulation results... 

    Multi-objective geometrical optimization of full toroidal CVT

    , Article International Journal of Automotive Technology ; Volume 14, Issue 5 , 2013 , Pages 707-715 ; 12299138 (ISSN) Delkhosh, M ; Saadat Foumani, M ; Sharif University of Technology
    2013
    Abstract
    The objective of this research is geometrical and kinematical optimization of full-toroidal continuously variable transmission (CVT) in order to achieve high power transmission efficiency and low mass. At first, a dynamic analysis is performed for the system. A computer model is developed to simulate elastohydrodynamic (EHL) contact between disks and roller and consequently, calculate CVT efficiency. The validity of EHL model is investigated by comparing output of this model and experimental data. Geometrical parameters are obtained by means of Particle Swarm Optimization algorithm, while the optimization objective is to maximize CVT efficiency and minimize its mass. The algorithm is run for... 

    Analysis of stress field of a screw dislocation inside an embedded nanowire using strain gradient elasticity

    , Article Scripta Materialia ; Volume 61, Issue 4 , 2009 , Pages 355-358 ; 13596462 (ISSN) Davoudi, K. M ; Gutkin, M. Yu ; Shodja, H. M ; Sharif University of Technology
    2009
    Abstract
    The stress field of a screw dislocation inside an embedded nanowire is considered within the theory of strain-gradient elasticity. It is shown that the stress singularity is removed and all stress components are continuous and smooth across the interface, in contrast with the results obtained within the classical theory of elasticity. The maximum magnitude of dislocation stress depends greatly on the dislocation position, the nanowire size, and the ratios of shear moduli and gradient coefficients of the matrix and nanowire materials. © 2009 Acta Materialia Inc  

    Small-scale oriented elasticity modeling of functionally graded rotating micro-disks with varying angular velocity in the context of the strain gradient theory

    , Article Acta Mechanica ; Volume 232, Issue 6 , 2021 , Pages 2395-2416 ; 00015970 (ISSN) Bagheri, E ; Asghari, M ; Kargarzadeh, A ; Badiee, M ; Sharif University of Technology
    Springer  2021
    Abstract
    During the varying angular speed timespans of the start or shutdown of rotating machinery, the machinery components may be subjected to intense mechanical loadings which should be taken into account by its fabricator in the designing processes. In the microscale rotating systems, where the angular velocity is typically very high, the importance of this issue is much higher. In this paper, a comprehensive strain-gradient elasticity formulation is presented for functionally graded rotating micro-disks under the effects of varying angular velocity. The gradation of the constituent material along the radial direction can be a helpful option to mitigate the stresses in rotating micro-disks under... 

    Strain gradient elasticity solution for functionally graded micro-cylinders

    , Article International Journal of Engineering Science ; Volume 50, Issue 1 , January , 2012 , Pages 22-30 ; 00207225 (ISSN) Sadeghi, H ; Baghani, M ; Naghdabadi, R ; Sharif University of Technology
    2012
    Abstract
    In this paper, strain gradient elasticity formulation for analysis of FG (functionally graded) micro-cylinders is presented. The material properties are assumed to obey a power law in radial direction. The governing differential equation is derived as a fourth order ODE. A power series solution for stresses and displacements in FG micro-cylinders subjected to internal and external pressures is obtained. Numerical examples are presented to study the effect of the characteristic length parameter and FG power index on the displacement field and stress distribution in FG cylinders. It is observed that the characteristic length parameter has a considerable effect on the stress distribution of FG... 

    A formulation for the characteristic lengths of fcc materials in first strain gradient elasticity via the Sutton-Chen potential

    , Article Philosophical Magazine ; Volume 90, Issue 14 , 2010 , Pages 1893-1913 ; 14786435 (ISSN) Shodja, H. M ; Tehranchi, A ; Sharif University of Technology
    Abstract
    The usual continuum theories are inadequate in predicting the mechanical behavior of solids in the presence of small defects and stress concentrators; it is well known that such continuum methods are unable to detect the change of the size of the inhomogeneities and defects. For these reasons various augmented continuum theories and strain gradient theories have been proposed in the literature. The major difficulty in implication of these theories lies in the lack of information about the additional material constants which appear in such theories. For fcc metals, for the calculation of the associated characteristic lengths which arise in first strain gradient theory, an atomistic approach... 

    A screw dislocation near a circular nano-inhomogeneity in gradient elasticity

    , Article International Journal of Solids and Structures ; Volume 47, Issue 6 , 2010 , Pages 741-750 ; 00207683 (ISSN) Davoudi, K. M ; Gutkin, M. Yu ; Shodja, H. M ; Sharif University of Technology
    Abstract
    A screw dislocation outside an infinite cylindrical nano-inhomogeneity of circular cross section is considered within the isotropic theory of gradient elasticity. Fields of total displacements, elastic and plastic distortions, elastic strains and stresses are derived and analyzed in detail. In contrast with the case of classical elasticity, the gradient solutions are shown to possess no singularities at the dislocation line. Moreover, all stress components are continuous and smooth at the interface unlike the classical solution. As a result, the image force exerted on the dislocation due to the differences in elastic and gradient constants of the matrix and inhomogeneity, remains finite when... 

    Boundary exponential stabilization of non-classical micro/nano beams subjected to nonlinear distributed forces

    , Article Applied Mathematical Modelling ; Volume 40, Issue 3 , 2016 , Pages 2223-2241 ; 0307904X (ISSN) Edalatzadeh, M. S ; Alasty, A ; Sharif University of Technology
    Elsevier Inc 
    Abstract
    In this paper, the vibration suppression of micro- or nano-scale cantilever beams used in M/NEMS devices is studied. The beam is subjected to some nonlinear distributed forces, namely electrostatics force with first order fringing field correction, Casimir, and van der Waals forces. For the sake of precision, the beam is modeled by strain gradient elasticity theory capable of predicting the size effects in mechanical behavior of small-scale flexible structures. Since the governing partial differential equation of motion is nonlinear, the linearization approach is adopted to tackle the control problem. A novel control law is proposed that guarantees the exponential stability of the linearized... 

    Mindlin–Eringen anisotropic micromorphic elasticity and lattice dynamics representation

    , Article Philosophical Magazine ; Volume 100, Issue 2 , 2020 , Pages 157-193 Moosavian, H ; Shodja, H. M ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    To account for certain essential features of material such as dispersive behaviour and optical branches in dispersion curves, a fundamental departure from classical elasticity to polar theories is required. Among the polar theories, micromorphic elasticity of appropriate grades and anisotropy is capable of capturing these physical phenomena completely. In the mathematical framework of micromorphic elasticity, in addition to the traditional elastic constants, some additional constants are introduced in the pertinent governing equations of motion. A precise evaluation of the numerical values of the aforementioned elastic constants in the realm of the experimentations poses serious... 

    Geometrical optimization of half toroidal continuously variable transmission using particle swarm optimization

    , Article Scientia Iranica ; Volume 18, Issue 5 , 2011 , Pages 1126-1132 ; 10263098 (ISSN) Delkhosh, M ; Saadat Foumani, M ; Boroushaki, M ; Ekhtiari, M ; Dehghani, M ; Sharif University of Technology
    Abstract
    The objective of this research is geometrical optimization of half toroidal Continuously Variable Transmission (CVT) in order to achieve high power transmission efficiency. The dynamic analysis of CVT is implemented and contact between the disk and the roller is modeled viaelastohydrodynamic (EHL) lubrication principles. Computer model is created using geometrical, thermal and kinetic parameters to determine the efficiency of CVT. Results are compared by other models to confirm the model validity. Geometrical parameters are obtained by means of Particle Swarm Optimization (PSO) algorithm, while the optimization objective is to maximize the power transmission efficiency. Optimization was...