Loading...
Search for: electric-current-control
0.005 seconds

    Robust control of an autonomous four-wire electronically-coupled distributed generation unit

    , Article IEEE Transactions on Power Delivery ; Volume 26, Issue 1 , September , 2011 , Pages 455-466 ; 08858977 (ISSN) Karimi, H ; Yazdani, A ; Iravani, R ; Sharif University of Technology
    2011
    Abstract
    This paper proposes a control strategy for the autonomous (islanded) operation of a four-wire, electronically-coupled distributed generation (DG) unit which can feed a highly unbalanced load, e.g., due to the presence of single-phase loads. In the grid-connected mode, the power-electronic interface of the DG unit enables the exchange of real and reactive power with the distribution network, based on the conventional dq-frame current control strategy. The current control scheme is disabled subsequent to the detection of an islanding event, and the proposed controller is activated. The proposed control strategy utilizes: i) an internal oscillator to maintain the island frequency and ii) a... 

    Design and analysis of three-phase variable hysteresis controlled single stage sepic based rectifier

    , Article 2009 International Conference on Electric Power and Energy Conversion Systems, EPECS 2009 ; 2009 ; 9789948427155 (ISBN) Ounie, S ; Mohammadpour, A ; Nejadpak, A ; Zolghadri, M. R ; Sharif University of Technology
    Abstract
    A methodology for controlling three phase PFC Sepic converter is presented, and behavior of the system is evaluated. The converter is connected in delta at the input and parallel at the output side, and is controlled by variable hysteresis current control method. By this approach, the current drawn by each of the individual converters is controlled to be in phase with its own input voltage. Detailed design criteria for the power and control stages of the single-phase SEPIC converter are presented and effects of this method on THD are verified  

    A new noise-immune method to detect protective CT saturation and its release instants

    , Article 2016 IEEE International Conference on Power and Renewable Energy, ICPRE 2016, 21 October 2016 through 23 October 2016 ; 2017 , Pages 284-287 ; 9781509030682 (ISBN) Borzooy, A ; Vakilian, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    CT saturation is a phenomenon that can cause inaccurate fault current measurement and may result in related protective relay failure to block the high current flow under a fault condition in a power system. Hence, it is required to develop a method to detect occurrence of CT saturation with a good accuracy under presence of noise in a power system. In this paper, a new method having the afore-mentioned characteristics is presented. The main benefit of exploiting the introduced approach here for detecting CT saturation is its high level of reliability as well as its reasonable operational speed in CT saturation detection. In other words, these two properties are implemented to this method.... 

    Predictive current control for programmable electronic ac load

    , Article 11th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2020, 4 February 2020 through 6 February 2020 ; 2020 Akhlaghi, S ; Zolghadri, M. R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Nowadays, Programmable Electronic AC Load (PEAL) is widely used to test various devices such as solar inverters, UPSs, filters, generators, and generally test all AC power and measuring devices. In this paper, Model Predictive Current Control (MPCC) is used for control of a programmable AC load. In each period, switching state that minimizes the cost function is selected and applied to the converter. Cost function is the square of the current components error. The effect of the horizon of prediction on the quality of the load current is investigated. To decrease the calculations burden, a limited search pool is used. Simulation results confirm that using two steps prediction horizon with... 

    A comparative study on current control methods for load balancing and power factor correction using STATCOM

    , Article 2005 IEEE Russia Power Tech, PowerTech, St. Petersburg, 27 June 2005 through 30 June 2005 ; 2005 ; 9781424418749 (ISBN) Hasanzadeh, A ; Parniani, M ; Sadriyeh, S. M. R ; Sharif University of Technology
    2005
    Abstract
    This paper investigates several current control methods for load balancing and power factor correction based on distribution Static Compensator (STATCOM). Two different configurations are considered for STATCOM; a three leg inverter, and three single phase inverters. It is assumed that the STATCOM is associated with a load that is remote from the supply. After a brief introduction, control structure based on PWM method and simulation results using PSCAD are presented. Next, the same system is simulated using hystersis control method. Both methods employ the instantaneous symmetrical components theory for load balancing and power factor correction. At the end, a comparison between two methods... 

    Top-down design of a low-power multi-channel 2.5-Gbit/s/channel gated oscillator clock-recovery circuit

    , Article Design, Automation and Test in Europe, DATE '05, Munich, 7 March 2005 through 11 March 2005 ; Volume I , 2005 , Pages 258-263 ; 15301591 (ISSN); 0769522882 (ISBN); 9780769522883 (ISBN) Muller, P ; Tajalli, A ; Atarodi, M ; Leblebici, Y ; Sharif University of Technology
    2005
    Abstract
    We present a complete top-down design of a low-power multi-channel clock recovery circuit based on gated current-controlled oscillators. The flow includes several tools and methods used to specify block constraints, to design and verify the topology down to the transistor level, as well as to achieve a power consumption as low as 5mW/Gbit/s. Statistical simulation is used to estimate the achievable bit error rate in presence of phase and frequency errors and to prove the feasibility of the concept. VHDL modeling provides extensive verification of the topology. Thermal noise modeling based on well-known concepts delivers design parameters for the device sizing and biasing. We present two... 

    Design and implementation of a single phase grid-connected PV inverter with a new active damping strategy

    , Article PEDSTC 2014 - 5th Annual International Power Electronics, Drive Systems and Technologies Conference ; Feb , 2014 , pp. 72-77 Hamzeh, M ; Karimi, Y ; Asadi, E ; Oraee, H ; Sharif University of Technology
    Abstract
    This paper presents an effective current injection method for a single phase grid-connected PV inverter with LCL filter. The main objective of the proposed control strategy is to compensate the resonance effect of the LCL filter. In the proposed control strategy, a resonance compensator is augmented to the conventional proportional resonance (PR) controller to attenuate current oscillations in resonance frequency of LCL filter. The proposed strategy robustly regulates the output current of grid connected inverter in various grid impedances and provides a high quality current injection capability for the PV inverter in harmonic polluted condition of the grid voltage. The performance of the... 

    Design of a bridgeless PFC with line-modulated fixed off-time current control and zero-voltage switching

    , Article PECon2010 - 2010 IEEE International Conference on Power and Energy, 29 November 2010 through 1 December 2010 ; 2010 , Pages 129-134 ; 9781424489466 (ISBN) Haghi, R ; Zolghadri, M. R ; Nasirian, V ; Noroozi, N ; Sharif University of Technology
    Abstract
    In this paper, the Line-Modulated Fixed Off-Time method is used as the current control strategy for a Power Factor Corrector (PFC) pre-regulator. A zero voltage switching PWM (ZVS-PWM) auxiliary circuit is configured to perform ZVS in the switches. Soft commutation of the main switch is achieved without additional current stress. A significant reduction in the total conduction loss is achieved, since the circulating current for the soft switching flows only through the auxiliary circuit and a minimum number of switching devices are involved in the circulating current path .The proposed rectifier uses a single converter instead of the conventional configuration composed of a four-diode... 

    A fast and cost-effective control of a three-phase stand-alone inverter

    , Article 8th Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2017, 14 February 2017 through 16 February 2017 ; 2017 , Pages 67-72 ; 9781509057665 (ISBN) Mazloum, N ; Keikha, O ; Yaghoubi, M ; Tahami, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    This paper proposes a straightforward control method for voltage control of a three-phase transformer-based inverter in uninterruptible power supplies or distributed generation systems. The approach offers a dual-loop design consisting inner current control loop and outer voltage loop. Sliding mode current controller provides desired bandwidth for voltage controller which consists of a state feedback term for stabilization and resonant term for harmonic damping. The proposed scheme provides fast dynamic response and low total harmonic distortion even for high power inverters with the limitations of switching frequency and LC filter components. Experimental studies for 2KVA linear and... 

    Decentralized control of parallel connection of two distributed generation units

    , Article 35th Annual Conference of the IEEE Industrial Electronics Society, IECON 2009, Porto, 3 November 2009 through 5 November 2009 ; 2009 , Pages 358-362 Bahrani, B ; Karimi, H ; Iravani, R ; Sharif University of Technology
    Abstract
    This paper presents a decentralized control strategy for the autonomous (islanded) operation of parallel connection of two distributed generation (DG) units. The DG units are electronically interfaced to the host grid at the same point of common coupling (PCC), where the local load is also supplied. In the grid-connected mode, the voltage-sourced converter (VSC) of each DG unit controls the exchange of real and reactive power components with the host grid, based on the conventional dq-current control strategy. In the islanded mode, one of the DG units provides voltage and frequency control for the island, and the other DG unit continues to operate with the pre-islanding dq-current control... 

    DC-link loop bandwidth selection strategy for grid-connected inverters considering power quality requirements

    , Article International Journal of Electrical Power and Energy Systems ; Volume 119 , 2020 Zarei, S. F ; Mokhtari, H ; Ghasemi, M. A ; Peyghami, S ; Davari, P ; Blaabjerg, F ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    DC-link voltage and output current control loops are two cascaded loops in the control structure of grid-connected inverters. A high DC-link voltage loop bandwidth (DCL-BW) provides more disturbance rejection capability for the control loop and is preferred from control system perspective. However, for stability issues, this BW is limited and must be sufficiently less than that of the current control loop. Among the different control schemes, instantaneous active reactive control (IARC) method provides the highest possible DCL-BW (i.e., 0.02 × switching frequency). Having this degree of freedom in the controller design, a proper methodology should be defined for selection of DCL-BW. In this...