Loading...
Search for: electric-equipment-protection
0.007 seconds

    A new noise-immune method to detect protective CT saturation and its release instants

    , Article 2016 IEEE International Conference on Power and Renewable Energy, ICPRE 2016, 21 October 2016 through 23 October 2016 ; 2017 , Pages 284-287 ; 9781509030682 (ISBN) Borzooy, A ; Vakilian, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    CT saturation is a phenomenon that can cause inaccurate fault current measurement and may result in related protective relay failure to block the high current flow under a fault condition in a power system. Hence, it is required to develop a method to detect occurrence of CT saturation with a good accuracy under presence of noise in a power system. In this paper, a new method having the afore-mentioned characteristics is presented. The main benefit of exploiting the introduced approach here for detecting CT saturation is its high level of reliability as well as its reasonable operational speed in CT saturation detection. In other words, these two properties are implemented to this method.... 

    A single phase transformer equivalent circuit for accurate turn to turn fault modeling

    , Article 24th Iranian Conference on Electrical Engineering, ICEE 2016, 10 May 2016 through 12 May 2016 ; 2016 , Pages 592-597 ; 9781467387897 (ISBN) Gholami, M ; Hajipour, E ; Vakilian, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    Recently, an increasing concern has been raised about turn-to-turn faults (TTFs) in power transformers, because these faults can lead to severe transformer insulation failure and consequently, its outage. Generally, it is impossible to experimentally analyze the transformer behavior under such faults, since the implementation of those experiments may be substantially destructive. Therefore, computer-aided models should be developed to investigate the performance of transformer protective relays under turn-to-turn faults. So far, existing transformer models are mainly formulated to implement in the EMTP-based softwares. However, most of power system protection engineers and researchers... 

    Guest editorial special section on microgrids

    , Article IEEE Transactions on Smart Grid ; Volume 3, Issue 4 , December , 2012 , Pages 1857-1859 ; 19493053 (ISSN) Fotuhi Firuzabad, M ; Iravani, R ; Aminifar, F ; Hatziargyriou, N ; Lehtonen, M ; Sharif University of Technology
    Abstract
    Despite the significant research efforts devoted to the microgrid and smart grid areas, numerous problems related to real world implementations still remain unsolved. The present special issue was announced with the objective of addressing and disseminating state-of-the-art R&D results on microgrids to bring together researchers from both academia and industry with the goal of fostering interactions among stakeholders. In response, 190 two-page extended abstracts were received and considered for the first round of reviews. Authors of about 60 selected abstracts were then invited to submit the full papers in the second round and out of them 27 high-quality manuscripts were ultimately approved... 

    A novel FRT strategy based on an analytical approach for PMSG-based wind turbines with ESS power rating reduction

    , Article Turkish Journal of Electrical Engineering and Computer Sciences ; Volume 26, Issue 5 , 2018 , Pages 2737-2752 ; 13000632 (ISSN) Atash Bahar, F ; Ajami, A ; Mokhtari, H ; Hojabri, H ; Sharif University of Technology
    Abstract
    In this paper an analytical approach is proposed to formulate the proper set of phase currents reference to ride the permanent magnet synchronous generator (PMSG)-based wind turbine (WT) through faults properly, regardless of fault type. Hence, the WT is forced to inject required reactive current by grid codes together with active power injection, to help support grid frequency during faults and reduce the energy storage system (ESS) power rating. Moreover, it prevents pulsating active power injection to the grid. During grid faults, the DC-link voltage is controlled by the ESS instead of the grid-side converter (GSC) and the GSC controller applies calculated reference currents. The ESS... 

    Appropriate crowbar protection for improvement of brushless DFIG LVRT during asymmetrical voltage dips

    , Article International Journal of Electrical Power and Energy Systems ; Volume 95 , 2018 , Pages 1-10 ; 01420615 (ISSN) Gholizadeh, M ; Tohidi, S ; Oraee, A ; Oraee, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This paper proposes effective approach for determining appropriate crowbar resistance value to be able to improve the brushless doubly fed induction generator ride through capability during any asymmetrical voltage dip scenarios. The brushless DFIG has great potential for wind power plants particularly in offshore applications where maintenance is a major concern. Dynamic behavior of the machine is studied using two axis model and a more precise equivalent circuit model is extracted for analyzing machine behavior under fault conditions. Important limits and constraints in the use of crowbar are identified and discussed in detail. It is shown that large crowbar values can lead to considerable... 

    Integration of wind turbines in distribution systems and development of an adaptive overcurrent relay coordination scheme with considerations for wind speed forecast uncertainty

    , Article IET Renewable Power Generation ; Volume 14, Issue 15 , 2020 , Pages 2983-2992 Dindar, A ; Mohammadi Ardehali, M ; Vakilian, M ; Sharif University of Technology
    Institution of Engineering and Technology  2020
    Abstract
    The integration of renewable energy (RE)-based distributed generation (DG) with electric power distribution systems (DSs) in association with smart grid technology has numerous benefits, however, due to their intermittent nature, the utilisation of RE-based DG may pose threats to the proper operation of conventional overcurrent (OC) protection schemes. The resulting threats, malfunctions, and non-selective actions could occur by relays within the DS, and the development of efficient protection schemes is necessary. The objective of this study is to propose and simulate an adaptive OC protection scheme in DSs in the presence of doubly-fed induction generator (DFIG) wind turbines based on wind... 

    Multivariable robust control of a horizontal wind turbine under various operating modes and uncertainties: A comparison on sliding mode and H∞ control

    , Article International Journal of Electrical Power and Energy Systems ; Volume 115 , 2020 Faraji Nayeh, R ; Moradi, H ; Vossoughi, G ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Wind turbines are generally controlled for the objectives of the turbine protection and generation of the acceptable power for the utility grid. In this paper, a nonlinear multivariable model of the wind turbine with a DFIG generator is considered. The rotor speed and the d-axis rotor current, as the controlled variables, are controlled via manipulation of the two generator voltages, as the control signals. Two robust control strategies including the sliding mode control and H∞ robust control, designed via μ-synthesis based on DK-iteration algorithm, are presented for switching between various operating modes. Development of an acceptable dynamic model and two innovative control strategies...