Loading...
Search for: electric-field-intensities
0.005 seconds

    Exposure of the human brain to an electromagnetic plane wave in the 100-1000 MHz frequency range for potential treatment of neurodegenerative diseases

    , Article IET Microwaves, Antennas and Propagation ; Volume 6, Issue 14 , 2012 , Pages 1565-1572 ; 17518725 (ISSN) Khaleghi, A ; Eslampanah Sendi, M.S ; Chávez Santiago, R ; Mesiti, F ; Balasingham, I ; Sharif University of Technology
    2012
    Abstract
    Radio signals can induce an electric field inside the brain, which might be potentially beneficial in the treatment of neurodegenerative diseases. For instance, a new method for the treatment of Alzheimer's disease in mice through the exposure to the radiation of mobile phones has been successfully demonstrated. In the light of these results, studying the induction of an electric field in the human brain through the controlled exposure to radio signals is of paramount importance for the eventual development of similar treatment techniques in humans. In this study, the authors study the radio signals in 100-1000 MHz as a means for inducing an electric field into the human brain in a... 

    Stability and breakup of liquid jets: Effect of slight gaseous crossflows and electric fields

    , Article Chemical Engineering Science ; Volume 165 , 2017 , Pages 89-95 ; 00092509 (ISSN) Rajabi, A ; Morad, M. R ; Rahbari, N ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Instability and breakup of a liquid jet under the influence of a gaseous crossflow in the presence of an electric field is investigated. A dispersion relation for disturbances on the jet surface is derived for the combined effects based on pioneer linear stability analysis for low speed limits. Effects of Weber, Bond and Ohnesorge numbers on the growth rate of disturbances are studied. The theoretical analysis developed for breakup length is used for comparisons with experimentally obtained breakup lengths. Measured breakup lengths were predicted satisfactorily by the linear theory in the region of low crossflow velocities (0–4 m/s) and electric field intensities (0–3×105 V/m). © 2017... 

    Liquid jet trajectory and droplet path influenced by combined cross flow and electric fields

    , Article Chemical Engineering Science ; Volume 181 , 18 May , 2018 , Pages 114-121 ; 00092509 (ISSN) Rajabi, A ; Morad, M. R ; Rahbari, N ; Pejman Sereshkeh, S. R ; Razavi, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This study investigates an ethanol liquid jet subjected to combination of an air crossflow and a normal electric field. The results on the liquid jet trajectory and subsequent droplets flight paths are presented. The liquid jet trajectory was found as a function of two non-dimensional quantities; the liquid jet to the crossflow momentum ratio and the electroinertial number. The electroinertial number is defined as the ratio between the liquid jet specific momentum and the electric force. A correlation is introduced for the jet trajectory in low crossflow speeds and electric field intensities. The same two quantities control the detached droplets flight paths. Satellite droplets flight angles... 

    Numerical simulation of high voltage electric pulse comminution of phosphate ore

    , Article International Journal of Mining Science and Technology ; Volume 25, Issue 3 , 2015 , Pages 473-478 ; ISSN: 20952686 Razavian, S. M ; Rezai, B ; Irannajad, M ; Ravanji, M. H ; Sharif University of Technology
    Abstract
    Numerical simulation of the electrical field distribution helps in-depth understanding of the mechanisms behind the responses and the benefits of the high voltage pulse comminution. The COMSOL Multiphysics package was used to numerically simulate the effect of ore compositions in this study. Regarding phosphate ore particles shape and composition, the effects of mineral composition, particle size, particle shape and electrodes distance were investigated on the electrical field intensity and distribution. The results show that the induced electrical field is significantly dependent on the electrical properties of minerals, the feed particle size and the location of conductive minerals in... 

    Numerical simulation of high voltage electric pulse comminution of phosphate ore

    , Article International Journal of Mining Science and Technology ; Volume 25, Issue 3 , May , 2015 , Pages 473-478 ; 20952686 (ISSN) Razavian, S. M ; Rezai, B ; Irannajad, M ; Ravanji, M. H ; Sharif University of Technology
    China University of Mining and Technology  2015
    Abstract
    Numerical simulation of the electrical field distribution helps in-depth understanding of the mechanisms behind the responses and the benefits of the high voltage pulse comminution. The COMSOL Multiphysics package was used to numerically simulate the effect of ore compositions in this study. Regarding phosphate ore particles shape and composition, the effects of mineral composition, particle size, particle shape and electrodes distance were investigated on the electrical field intensity and distribution. The results show that the induced electrical field is significantly dependent on the electrical properties of minerals, the feed particle size and the location of conductive minerals in... 

    Electrokinetic behavior of asphaltene particles

    , Article Fuel ; Volume 178 , 2016 , Pages 234-242 ; 00162361 (ISSN) Hosseini, A ; Zare, E ; Ayatollahi, Sh ; M. Vargas, F ; G. Chapman, W ; Kostarelos, K ; Taghikhani, V ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    The effect of electrostatic field on the aggregation rate and aggregate size of asphaltene particles precipitated from three different crude oil samples suspended in a mixture of toluene and n-heptane (a model oil) was investigated. An electrode-embedded glass micro-model utilizing a high-voltage direct current power supply was utilized in this study. The asphaltene particle size and the rate of aggregation under the electric field were monitored using a high-resolution optical microscope and the average aggregate size for asphaltene particles was estimated using image processing software. To investigate the effects of structural parameters on asphaltene aggregation rate, aggregate size and... 

    Theoretical comparative assessment of single- and two-phase models for natural convection heat transfer of Fe3O4/ethylene glycol nanofluid in the presence of electric field

    , Article Journal of Thermal Analysis and Calorimetry ; 2020 Etesami, N ; Tavakoli, S ; Pishvaie, M. R ; Sharif University of Technology
    Springer Netherlands  2020
    Abstract
    Natural convective heat transfer of Fe3O4/ethylene glycol nanofluids around the platinum wire as a heater in the absence and presence of the high electric field was investigated, numerically. The control volume finite element method was employed for the numerical simulation. Effects of the flow model, the volume fraction of nanoparticles, Rayleigh number, and the electric field intensity on the natural heat transfer coefficient (NHTC) of nanofluid were studied. Simulation results of single-phase and two-phase flow models showed that the two-phase model could better predict experimental data than the single-phase model due to take into account the velocity of each phase in the mixture. The... 

    Theoretical comparative assessment of single- and two-phase models for natural convection heat transfer of Fe3O4/ethylene glycol nanofluid in the presence of electric field

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 146, Issue 2 , 2021 , Pages 981-992 ; 13886150 (ISSN) Etesami, N ; Tavakoli, S ; Pishvaie, M. R ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    Natural convective heat transfer of Fe3O4/ethylene glycol nanofluids around the platinum wire as a heater in the absence and presence of the high electric field was investigated, numerically. The control volume finite element method was employed for the numerical simulation. Effects of the flow model, the volume fraction of nanoparticles, Rayleigh number, and the electric field intensity on the natural heat transfer coefficient (NHTC) of nanofluid were studied. Simulation results of single-phase and two-phase flow models showed that the two-phase model could better predict experimental data than the single-phase model due to take into account the velocity of each phase in the mixture. The... 

    Electrokinetic properties of asphaltene colloidal particles: determining the electric charge using micro electrophoresis technique

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 541 , 2018 , Pages 68-77 ; 09277757 (ISSN) Azari, V ; Abolghasemi, E ; Hosseini, A ; Ayatollahi, S ; Dehghani, F ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this work, the electrokinetic properties of asphaltene particles have been investigated. Micro-electrophoresis method by applying DC electric field, was utilized to different mixtures containing asphaltene to determine its electric charge. It was observed that in the case of using n-heptane and its mixture with toluene (heptol), the asphaltene particles were showed to be positively charged however for toluene itself, they expressed no tendency toward the electrodes. While it is expected that larger asphaltene aggregates carry higher electric charge, the results contradictorily showed that they are mainly governed by gravity rather than electro-static force and that “aggregation” reduces...