Loading...
Search for: electric-vehicles--evs
0.003 seconds

    Pricing of Vehicle-to-Grid Services in a Microgrid by Nash Bargaining Theory

    , Article Mathematical Problems in Engineering ; Volume 2017 , 2017 ; 1024123X (ISSN) Sarparandeh, M. H ; Ehsan, M ; Sharif University of Technology
    Hindawi Publishing Corporation  2017
    Abstract
    Owners of electric vehicles (EVs) can offer the storage capacity of their batteries to the operator of a microgrid as a service called vehicle-to-grid (V2G) to hold the balance between supply and demand of electricity, particularly when the microgrid has intermittent renewable energy sources. Literature review implies that V2G has economic benefits for both microgrid operator and EV owners, but it is unclear how these benefits are divided between them. The challenge grows when the policy makers rely on the V2G revenue as an incentive for expanding the penetration of EVs in the automotive market. This paper models the interaction between microgrid operator and EV owners as a bargaining game... 

    Energy scheduling of a technical virtual power plant in presence of electric vehicles

    , Article 2017 25th Iranian Conference on Electrical Engineering, ICEE 2017, 2 May 2017 through 4 May 2017 ; 2017 , Pages 1193-1198 ; 9781509059638 (ISBN) Pourghaderi, N ; Fotuhi Firuzabad, M ; Kabirifar, M ; Moeini Aghtaie, M ; Sharif University of Technology
    Abstract
    In modern power systems, technical virtual power plants (TVPPs) play an important role enabling presence of distributed energy resources (DERs) in electricity markets. In this paper, strategy of using the available energy resources for a TVPP is put under investigation. A new optimization framework is presented for problem of TVPP energy scheduling by taking operational constraints of distribution network into account. In the proposed model, photovoltaic (PV) units and micro turbines along with the electric vehicles (EVs) are scheduled in such a way that the profit of TVPP owner would be maximized. The uncertainty in output generation of PV units is modeled by adopting fuzzy c-means (FCM)... 

    Electric vehicles as mobile energy storage devices to alleviate network congestion

    , Article 2019 Smart Gird Conference, SGC 2019, 18 December 2019 through 19 December 2019 ; 2019 ; 9781728158945 (ISBN) Haji Abolhassani, M ; Safdarian, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Electric vehicles (EVs) usage is becoming ubiquitous nowadays. Widespread integration of electric vehicles into electric energy distribution systems (EEDSs) has a twofold impact: (1) It may impose a burden on EEDSs when EVs are charging, (2) EVs could discharge their battery capacity using V2G technology when required. To mitigate adverse effects of massive integration of EVs in EEDSs, EVs could be used as mobile energy storage devices (MESDs) to transfer electric energy throughout EEDSs using a proper charging/discharging scheme. In this paper, a mixed integer linear programming (MILP) model is proposed to control charging and discharging of EVs to improve EEDS performance. EVs are modeled... 

    A hybrid storage-wind virtual power plant (VPP) participation in the electricity markets: A self-scheduling optimization considering price, renewable generation, and electric vehicles uncertainties

    , Article Journal of Energy Storage ; Volume 25 , 2019 ; 2352152X (ISSN) Alahyari, A ; Ehsan, M ; Mousavizadeh, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The fast growth of technologies most of which depend on natural sources of energy has resulted in a huge consumption of fossil fuels. In this regard, many solutions have been suggested to alleviate the side effects such as air pollution and global warming. Among these solutions, mobile storages like electric vehicles (EVs) and renewable generations, have grown significantly due to being more applicable. But uncoordinated operation and uncertain nature of these distributed energy resources (DERs) can bring forward new challenges and issues to the operators of power system. Thus, in many cases it is more efficient to co-operate them in a hybrid system. In this study, we address a virtual power... 

    Microgrid Energy Management with Optimal Operation of Electric Vehicles Parkinglots Considering Technical and Social Aspect

    , M.Sc. Thesis Sharif University of Technology Helmzadeh, Shahrdad (Author) ; Hosseini, Hamid (Supervisor)
    Abstract
    The presence of electric vehicle (EV) parking in distribution or microgrids can become a challenging issue for the power grid. If parking operators charge EVs parked in their parking facilities without coordination with the distribution or microgrid operator, they can impose a heavy burden on the grid, resulting in increased costs and problems in the power network. This study aims to address energy management in EV parking facilities in the distribution network by proposing a two-level model. In this two-level model, the high-level problem is the distribution network, and the low-level problem is the parking facility. At the high-level, the distribution network operator tries to maximize... 

    Game theory meets distributed model predictive control in vehicle-to-grid systems

    , Article 11th International Conference on Electrical and Electronics Engineering, ELECO 2019, 28 November 2019 through 30 November 2019 ; 2019 , Pages 764-768 ; 9786050112757 (ISBN) Karimi, A ; Haeri, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Electric Vehicles (EVs) will be used rampantly in future transportation system. Although the uncontrolled charging of these EVs will be threatening for the stability of the grid, a compatible energy trading policy may provide beneficial services to the grid as well as preserving the sustainability of the system. In this paper, by taking advantage of block rate tariff, a wholesale pricing policy is introduced. A multi-objective approach is utilized to address the cost reduction and load leveling services concurrently. Due to the high computational complexity of a centralized problem, a game theoretic approach is exerted in order to design decentralized controllers for EVs. Moreover, an MPC... 

    Day-ahead resource scheduling in distribution networks with presence of electric vehicles and distributed generation units

    , Article Electric Power Components and Systems ; Volume 47, Issue 16-17 , 2019 , Pages 1450-1463 ; 15325008 (ISSN) Shafiee, M ; Ghazi, R ; Moeini Aghtaie, M ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    In this paper a new framework for scheduling of available resources in the distribution networks is developed. In this respect attempts are focused on interactions between charging/discharging profiles of electric vehicles (EVs) and output power of distributed generation units. To reach this goal, the proposed framework is designed as a two-stage optimization procedure. In the first stage, the charging/discharging schedules of EVs are extracted running a linear programing optimization problem taking into account the EV users' constraints and requirements. The usage profiles of the DG units, strategy of buying electricity from the market and also the final charging/discharging patterns of the... 

    Enhancing power distribution system flexibility using electric vehicle charging management

    , Article 27th Iranian Conference on Electrical Engineering, ICEE 2019, 30 April 2019 through 2 May 2019 ; 2019 , Pages 782-786 ; 9781728115085 (ISBN) Rajaei, A ; Jooshaki, M ; Fotuhi Firuzabad, M ; Moeini Aghtaie, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this paper, a two-stage charging management framework is proposed to exploit the potential flexibility of Electric Vehicles (EVs). The aim is to reduce drastic variations in distribution system net load caused by integration of intermittent renewable distributed generation (DG) units. In the first stage, a home-based charging method is formulated in which the desired charging schedule of EVs is obtained by minimizing the cost of energy taking into account owners' preferences. The attained charging schedules are then announced to EVs Coordinator Agent (ECA) which, as the second stage, applies an LP optimization to reduce the cost of ramp provision. Moreover, an incentive scheme is... 

    Joint expansion planning studies of EV parking lots placement and distribution network

    , Article IEEE Transactions on Industrial Informatics ; Volume 16, Issue 10 , October , 2020 , Pages 6455-6465 Mozaffari, M ; Askarian Abyaneh, H ; Jooshaki, M ; Moeini Aghtaie, M ; Sharif University of Technology
    IEEE Computer Society  2020
    Abstract
    Long-term distribution network planning (DNP) is considered as one of the most challenging issues for distribution network operators (DNOs). By increasing EVs in cities, it has appeared some new players such as electric vehicles (EVs) owners and electric vehicle parking lots (EVPLs) owners for DNP. In this article, we conduct a new study on the coupled dynamic expansion problem of EVPLs placement and distribution networks. To reach this goal, at first, EVs driving and charging/discharging behavior as some influential factors is modeled using an efficient probabilistic algorithm. An analytical model is then introduced to estimate the number of EVs in EVPLs at different times. To find out the... 

    A risk-constrained decision support tool for EV aggregators participating in energy and frequency regulation markets

    , Article Electric Power Systems Research ; Volume 185 , August , 2020 Habibifar, R ; Aris Lekvan, A ; Ehsan, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The growing trend of electric vehicles (EVs) in recent years has led to the emergence of EV aggregators in electricity markets. Generally, the main goal of an EV aggregator is to buy electricity from the wholesale market in a cost-effective manner while satisfying the charging requirements of EV owners. Accordingly, this paper presents a decision support tool for EV aggregators which enables them to determine the optimal bidding strategy to effectively participate in the day-ahead and real-time energy, and frequency regulation markets. Indeed, the aggregator mainly obtains profit by selling energy during the high-price hours (via vehicle-to-grid (V2G) capability) and providing primary... 

    Developing a multi-objective framework for planning studies of modern distribution networks

    , Article 2016 International Conference on Probabilistic Methods Applied to Power Systems, PMAPS 2016 - Proceedings, 16 October 2016 through 20 October 2016 ; 2016 ; 9781509019700 (ISBN) Haji Seyed Olia, S. A ; Jooshaki, M ; Moeini Aghtaie, M ; Fotuhi Firuzabad, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    This paper presents a new framework for planning studies of modern distribution networks. Presence of electric vehicles (EVs) and various technologies of distributed generation (DG) technologies are considered in the studies as two upcoming events of the future systems. In this regard, place and capacity of DG units along with the reinforcement of distribution lines are determined running a multi-objective (MO) optimization algorithm. Total losses of the distribution network along with annualized cost of expansion plans including investment, operation and maintenance costs are introduced as the main criteria which should be optimized in the proposed framework. An effective Posteriori... 

    Optimal zonal fast-charging station placement considering urban traffic circulation

    , Article IEEE Transactions on Vehicular Technology ; Volume 66, Issue 1 , 2017 , Pages 45-56 ; 00189545 (ISSN) Rajabi Ghahnavieh, A ; Sadeghi Barzani, P ; Sharif University of Technology
    Abstract
    Fast-charging stations are connected to the electric grid and can fully charge an electric vehicle (EV) in less than half an hour. The capacity and location of the charging stations bring the costs to the electric grid operator, as well as to the station owner and EV user. A zonal approach has been proposed in this paper to determine the optimal place and capacity of fast-charging stations. Station development cost and the expected costs incurred by the EV user and the grid operator due to EV charging have also been included in the proposed approach. The geographic characteristics associated with the electric substations, urban roads, and city zones have also been considered in the proposed... 

    A multi-objective framework for energy resource scheduling in active distribution networks

    , Article International Journal of Ambient Energy ; 2018 , Pages 1-13 ; 01430750 (ISSN) Shafiee, M ; Ghazi, R ; Moeini Aghtaie, M ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    Purpose: The purpose of this paper is to investigate the impacts of electric vehicles' (EVs) charging/discharging decisions in energy resources scheduling problem of active distribution networks. Design/methodology/approach: The problem under study is modelled as a two-stage optimisation problem in which the main requirements of EV owners are introduced as an objective function of the first stage. The total energy costs and the emission factor are considered as the main criteria of the second stage. The output generation schedules of distributed generation (DG) technologies together with the charging/discharging schedule of EVs are proposed as decision variables of the energy scheduling... 

    A multi-objective framework for energy resource scheduling in active distribution networks

    , Article International Journal of Ambient Energy ; Volume 40, Issue 5 , 2019 , Pages 504-516 ; 01430750 (ISSN) Shafiee, M ; Ghazi, R ; Moeini Aghtaie, M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Purpose: The purpose of this paper is to investigate the impacts of electric vehicles' (EVs) charging/discharging decisions in energy resources scheduling problem of active distribution networks. Design/methodology/approach: The problem under study is modelled as a two-stage optimisation problem in which the main requirements of EV owners are introduced as an objective function of the first stage. The total energy costs and the emission factor are considered as the main criteria of the second stage. The output generation schedules of distributed generation (DG) technologies together with the charging/discharging schedule of EVs are proposed as decision variables of the energy scheduling... 

    Long-Term electric vehicle planning in a microgrid

    , Article 2019 IEEE PES Innovative Smart Grid Technologies Asia, ISGT 2019, 21 May 2019 through 24 May 2019 ; 2019 , Pages 3467-3472 ; 9781728135205 (ISBN) Clairand, J. M ; Arriaga, M ; Ravanji, M. H ; Escriva Escriva, G ; IEEE; IEEE Power and Energy Society (PES) ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Isolated microgrids depend mainly on diesel generation and have polluting transportation. This is being addressed by the introduction of renewable energy resources and electric vehicles (EVs). Hence, this paper presents a novel long-term planning model for the introduction of EVs in isolated microgrids. This work studies the replacement of internal combustion vehicles with electric ones by analyzing their respective investment, maintenance and operation costs. Various case studies are discussed, considering different EV and solar photovoltaic (PV) penetration levels, and varying prices of diesel in the planning horizon. Results demonstrate that investing in EVs could significantly reduce net... 

    Robust optimization of renewable-based multi-energy micro-grid integrated with flexible energy conversion and storage devices

    , Article Sustainable Cities and Society ; Volume 64 , 2021 ; 22106707 (ISSN) Lekvan, A. A ; Habibifar, R ; Moradi, M ; Khoshjahan, M ; Nojavan, S ; Jermsittiparsert, K ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This paper presents a new model for optimal scheduling of renewable-based multi-energy microgrid (MEM) systems incorporated with emerging high-efficient technologies such as electric vehicle (EVs) parking lots, power-to-gas (P2G) facility, and demand response programs. The proposed MEM is equipped with wind energy, multi-carrier energy storage technologies, boiler, combined heat and power unit, P2G, EVs, and demand response with the aim of total operational cost minimization. Meanwhile, the system operator can participate in three electricity, heat, and gas market to meet local demands as well as achieve desired profits through energy exchanges. The proposed MEM is exposed to high-level... 

    A novel management scheme to reduce emission produced by power plants and plug-in hybrid electric vehicles in a smart microgrid

    , Article International Journal of Environmental Science and Technology ; Volume 17, Issue 5 , 2020 , Pages 2529-2544 Ashrafi, R ; Soleymani, S ; Mehdi, E ; Sharif University of Technology
    Springer  2020
    Abstract
    Recently, with the growth and development of distributed generation (DGs) and energy storage systems (ESSs), as well as smart control equipment, microgrids (MGs) have been developed. Microgrids are comprised of a limited number of constitutive parts, including loads, DGs, ESSs, and electric vehicles (EVs). This paper presents a novel scheme to manage active and reactive powers, based on DGs, ESSs, and EVs to reduce the total operation cost including power generation and emission costs. Simultaneous management of active and reactive power makes it possible to consider grid operation constraints together. In the proposed schedule, the vehicles are assumed to be plug-in hybrid electric...