Search for: electrochemical-biosensing
0.007 seconds

    Composites of reduced graphene oxide/nickel submicrorods for non-enzymatic electrochemical biosensing: application to amperometric glucose detection

    , Article Journal of the Electrochemical Society ; Volume 167, Issue 8 , 2020 Mohammadzadeh, A ; Mazaheri, M ; Sedighian, A ; Ghanbari, H ; Simchi, A ; Sharif University of Technology
    Institute of Physics Publishing  2020
    For the rapid detection of hyperglycemia in human blood, we adopted a facile and two-step electrochemical procedure to prepare nickel/reduced graphene oxide (rGO) hybrid electrodes in the framework of a three-dimensional (3D) nanostructure. High-density and vertically-aligned nickel submicrorods with an average diameter of 155 ± 15 nm and a length of 7 ± 1 μm (an aspect ratio of about 40-50) were prepared by template-mediated electrochemical deposition techniques. Networks of rGO nanosheets between the rod-shaped arrays were formed by the cathodic electrophoretic deposition method. The synergistic effect of nickel morphology (planar and high-density rod-shaped arrays) and graphene oxide... 

    A 3D-printed hybrid nasal cartilage with functional electronic olfaction

    , Article Advanced Science ; Volume 7, Issue 5 , 2020 Jodat, Y. A ; Kiaee, K ; Vela Jarquin, D ; De la Garza Hernández, R. L ; Wang, T ; Joshi, S ; Rezaei, Z ; de Melo, B. A. G ; Ge, D ; Mannoor, M. S ; Shin, S. R ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Advances in biomanufacturing techniques have opened the doors to recapitulate human sensory organs such as the nose and ear in vitro with adequate levels of functionality. Such advancements have enabled simultaneous targeting of two challenges in engineered sensory organs, especially the nose: i) mechanically robust reconstruction of the nasal cartilage with high precision and ii) replication of the nose functionality: odor perception. Hybrid nasal organs can be equipped with remarkable capabilities such as augmented olfactory perception. Herein, a proof-of-concept for an odor-perceptive nose-like hybrid, which is composed of a mechanically robust cartilage-like construct and a biocompatible... 

    Hierarchical core-shell structure of ZnO nanotube/MnO2 nanosheet arrays on a 3D graphene network as a high performance biosensing platform

    , Article RSC Advances ; Volume 6, Issue 66 , 2016 , Pages 61190-61199 ; 20462069 (ISSN) Asadian, E ; Shahrokhian, S ; Iraji zad, A ; Sharif University of Technology
    Royal Society of Chemistry 
    A hierarchical core-shell structure composed of ZnO nanotubes/MnO2 nanosheets was fabricated via a two-step electrochemical deposition procedure on the surface of a 3D graphene network (3DGN) as a free-standing monolithic electrode. In the first step, ZnO nanorod arrays were grown on the surface of a 3DGN followed by electrochemical deposition of MnO2 nanosheets in the next step, which caused the inner parts of initial ZnO nanorods to etch away and resulted in the formation of ZnO nanotubes (ZnO NTs). The highly porous interconnected graphene backbone offers very high conductivity and a large accessible surface area. On the other hand, the formation of ZnO nanotubes can enhance the... 

    Toward single-DNA electrochemical biosensing by graphene nanowalls

    , Article ACS Nano ; Volume 6, Issue 4 , March , 2012 , Pages 2904-2916 ; 19360851 (ISSN) Akhavan, O ; Ghaderi, E ; Rahighi, R ; Sharif University of Technology
    Graphene oxide nanowalls with extremely sharp edges and preferred vertical orientation were deposited on a graphite electrode by using electrophoretic deposition in an Mg 2+-GO electrolyte. Using differential pulse voltammetry (DPV), reduced graphene nanowalls (RGNWs) were applied for the first time, in developing an ultra-high-resolution electrochemical biosensor for detection of the four bases of DNA (G, A, T, and C) by monitoring the oxidation signals of the individual nucleotide bases. The extremely enhanced electrochemical reactivity of the four free bases of DNA, single-stranded DNA, and double-stranded DNA (dsDNA) at the surface of the RGNW electrode was compared to electrochemical...