Loading...
Search for: electromagnetic-simulation
0.011 seconds

    Extraction of effective constitutive parameters of artificial media using Bloch modes

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 36, Issue 11 , 2019 , Pages 3226-3235 ; 07403224 (ISSN) Sheikh Ansari, A ; Rejaei, B ; Sharif University of Technology
    OSA - The Optical Society  2019
    Abstract
    The effective constitutive parameters of a three-dimensional periodic structure are calculated using its Bloch modes. These modes and their propagation constants are obtained from eigenvectors and eigenvalues of the generalized transfer matrix of a unit layer of the structure. Effective bulk permittivity and permeability tensors of the medium are obtained when two of the Bloch modes are dominant, i.e., propagate without significant decay inside the medium. The effect of the strongly decaying Bloch modes, which are excited at the interface with a conventional medium, are included by means of surface impedance matrices. The results are in excellent agreement with full-wave electromagnetic... 

    Extraction of effective constitutive parameters of artificial media using bloch modes

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 36, Issue 11 , 2019 , Pages 3226-3235 ; 07403224 (ISSN) Sheikh Ansari, A ; Rejaei, B ; Sharif University of Technology
    OSA - The Optical Society  2019
    Abstract
    The effective constitutive parameters of a three-dimensional periodic structure are calculated using its Bloch modes. These modes and their propagation constants are obtained from eigenvectors and eigenvalues of the generalized transfer matrix of a unit layer of the structure. Effective bulk permittivity and permeability tensors of the medium are obtained when two of the Bloch modes are dominant, i.e., propagate without significant decay inside the medium. The effect of the strongly decaying Bloch modes, which are excited at the interface with a conventional medium, are included by means of surface impedance matrices. The results are in excellent agreement with full-wave electromagnetic... 

    Propagation and refraction of left-handed plasmons on a semiconducting substrate covered by graphene

    , Article Optics Letters ; Volume 43, Issue 9 , 2018 , Pages 2010-2013 ; 01469592 (ISSN) Zivari, A. P ; Bagheri, A. M ; Rejaei, B ; Khavasi, A ; Sharif University of Technology
    OSA - The Optical Society  2018
    Abstract
    We show that a plasmonic semiconductor substrate can support highly confined surface plasmons when it is covered by a graphene layer. This occurs when the imaginary part of graphene conductivity and real part of the effective permittivity of the surrounding medium become simultaneously negative. Full-wave electromagnetic simulations demonstrate the occurrence of negative refraction and two-dimensional lensing at the interface separating regions supporting conventional right-handed graphene plasmons and left-handed surface plasmon polaritons. © 2018 Optical Society of America  

    Statistical modeling of consecutive range profiles for radar target recognition

    , Article Proceedings International Radar Symposium, Dresden ; Volume 2 , June , 2013 , Pages 608-613 ; 21555753 (ISSN) ; 9783954042234 (ISBN) Ajorloo, A ; Hadavi, M ; Nayebi, M. M ; Bastani, M. H ; Sharif University of Technology
    2013
    Abstract
    The high resolution range profile (HRRP) is known as the most important tool in radar target recognition. Mainly, the sensitivity to the aspect angle limits the performance of the related methods. To overcome this problem, Gaussian mixture distribution is used to model the short-term relation of consecutive HRRPs. In this work, an alternative dynamical system based method is proposed to overcome the limitations of recent methods in the field such as the independency assumption. Here, the performance of the method is tested by the data produced in an electromagnetic simulation for the radar return from an aerial maneuvering target. The results show the performance of the proposed method... 

    Single-site source localisation using scattering data

    , Article IET Radar, Sonar and Navigation ; Volume 12, Issue 2 , February , 2018 , Pages 250-259 ; 17518784 (ISSN) Samizadeh Nikoo, M ; Behnia, F ; Sharif University of Technology
    Institution of Engineering and Technology  2018
    Abstract
    Passive localisation of non-cooperative targets through their electromagnetic emissions is an attractive issue. This localisation task can be carried out using multitude of receiver sites being linked together. This multiplicity, however, brings about difficulties in organising and coordinating the sites. One can even claim that the method is no longer passive considering the necessary communication links between the sites. On the other hand, single-site localisation methods basically overcome these difficulties eliminating the need for inter-site communications. In this study, a single-site localisation method is presented and analysed. This method is applicable to scenarios with a large... 

    Scattering of surface plasmons on graphene by a discontinuity in surface conductivity

    , Article Journal of Optics (United Kingdom) ; Volume 17, Issue 7 , June , 2015 ; 20408978 (ISSN) Rejaei, B ; Khavasi, A ; Sharif University of Technology
    Institute of Physics Publishing  2015
    Abstract
    The scattering of graphene surface plasmons from an arbitrary, one-dimensional discontinuity in graphene surface conductivity is treated analytically by an exact solution of the quasi-static integral equation for surface current density in the spectral domain. It is found that the reflection and transmission coefficients are not governed by the Fresnel formulas obtained by means of the effective medium approach. Furthermore, the reflection coefficient generally exhibits an anomalous reflection phase, which has so far only been reported for the particular case of reflection from abrupt edges. This anomalous phase becomes frequency-independent in the regime where the effect of inter-band... 

    Improved-resolution millimeter-wave imaging through structured illumination

    , Article Applied Optics ; Volume 56, Issue 15 , 2017 , Pages 4454-4465 ; 1559128X (ISSN) Shayei, A ; Kavehvash, Z ; Shabany, M ; Sharif University of Technology
    Abstract
    A resolution-improved active millimeter-wave (MMW) imaging structure, based on the theory of structured illumination, is proposed in this paper. The structured illumination is a well-defined concept for surpassing the diffraction limit in optical microscopy, where imposing grating patterns on the targeted object could help in moving the object frequency spectrum along the desired direction in the spatial frequency domain. This frequency shift helps in passing different parts of the object's frequency spectrum through the diffraction filter. The combination of resultant images provides a framework to pass a wider frequency band of the object, thereby achieving super-resolution. This idea has... 

    Theoretical study of light trapping in nanostructured thin film solar cells using wavelength-scale silver particles

    , Article ACS Applied Materials and Interfaces ; Volume 7, Issue 27 , July , 2015 , Pages 14926-14932 ; 19448244 (ISSN) Dabirian, A ; Taghavinia, N ; Sharif University of Technology
    American Chemical Society  2015
    Abstract
    We propose and theoretically evaluate a plasmonic light trapping solution for thin film photovoltaic devices that comprises a monolayer or a submonolayer of wavelength-scale silver particles. We systematically study the effect of silver particle size using full-wave electromagnetic simulations. We find that light trapping is significantly enhanced when wavelength-scale silver particles rather than the ones with subwavelength dimensions are used. We demonstrate that a densely packed monolayer of spherical 700 nm silver particles enhances integrated optical absorption under standard air mass 1.5 global (AM1.5G) in a 7 μm-thick N719-sensitized solar cell by 40% whereas enhancement is smaller... 

    Application of the array scanning method in periodic structures with Large periods

    , Article Electromagnetics ; Volume 35, Issue 5 , 2015 , Pages 293-309 ; 02726343 (ISSN) Bakhtafrouz, A ; Borji, A ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    The problem of aperiodic excitation of periodic structures with periods larger than a half-wavelength is revisited. A large number of antennas and other electromagnetic wave propagation problems fall within this category. Because of overlapping branch cuts, the conventional path deformation techniques employed in application of the array scanning method for this type of problem fail when the period is larger than a half-wavelength. A new method based on the subdivision of the integration path and using the double exponential quadrature formula is introduced to alleviate this problem and apply the array scanning method to structures with an arbitrary spatial period. To demonstrate the... 

    Methods for failure analysis and diagnosis of millimeter-wave system-in-packages

    , Article IEEE Transactions on Device and Materials Reliability ; Volume 17, Issue 2 , 2017 , Pages 371-380 ; 15304388 (ISSN) Fakharzadeh, M ; Tazlauanu, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    This paper presents a sequence of affordable methods applied to diagnose a millimeter-wave system-in-package. The module used in this paper is a 60 GHz transceiver with a waveguide interface, designed to transmit 8 dBm of saturated power. It consists of a flip-chipped RFIC, a multi-layer organic substrate, a metal enclosure with a standard waveguide interface, passive components and a 30-pin connector. The first measured output power was 3 to 6 dB below the desired value over the 60 GHz band. Thus, all parts of the module were thoroughly investigated to detect the cause of power drop. By 3-D electromagnetic simulation of the enclosure, the cavity modes and power leakage in the enclosure were... 

    Optimum design of high power and high efficiency mm-wave fundamental oscillators

    , Article International Journal of Circuit Theory and Applications ; Volume 46, Issue 8 , 2018 , Pages 1443-1461 ; 00989886 (ISSN) Shirinabadi, H ; Kalantari, M ; Fotowat Ahmady, A ; Banai, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    A systematic method to design high power and high efficiency mm-wave fundamental oscillators is presented. By using a linear time variant method, we first obtain the optimum conditions and show that these conditions can be significantly different for high power and high efficiency fundamental oscillation. Next, we propose a modified multistage ring oscillator with interstage passive networks to exploit the full capacity of the transistors in terms of output power or efficiency. Analytical expressions are also derived to determine the value of passive elements used in the oscillator. To verify the validity of the method, a 77-GHz two-stage (differential) VCO is designed in a 65-nm CMOS... 

    Tunable Stopband HTS Josephson Junction Left-Handed Transmission Line with Independently Biasable Unit Cells

    , Article IEEE Transactions on Applied Superconductivity ; Volume 30, Issue 1 , 2020 Alizadeh, A ; Rejaei, B ; Fardmanesh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    A practical coplanar Josephson junction left-handed transmission line based on a step-edge junction technique is proposed in high-temperature superconductor technology and analyzed by electromagnetic simulations. The layout is designed for monolayer Yttrium Barium Copper Oxide thin film fabrication process. The propagation stopbands are tunable by controlling bias currents of Josephson junction arrays acting as parallel inductors for unit cells of the transmission line. Unlike the reported designs, each unit cell of our left-handed transmission line is independently biasable due to dc isolation of the unit cells along the transmission line. Being individually biasable is practically... 

    HTS transformers leakage flux and short circuit force mitigation through optimal design of auxiliary windings

    , Article Cryogenics ; Volume 110 , September , 2020 Moradnouri, A ; Vakilian, M ; Hekmati, A ; Fardmanesh, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Mitigation and control of leakage fluxes and short circuit forces needs much more attention, for a high-temperature superconducting (HTS) transformer, than for a conventional one. Different methods such as the application of auxiliary windings, multi-segment winding, and flux diverter have been presented in the literatures for leakage magnetic field reduction in HTS transformers. In this paper, for the first time, optimal design of auxiliary windings has been performed for a 132/13.8 kV, 50 MVA three phase core type HTS transformer. Genetic algorithm (GA) has been used for the optimization process. Induced current in auxiliary windings which is inversely proportional to the leakage fluxes... 

    Optimal design of flux diverter using genetic algorithm for axial short circuit force reduction in HTS transformers

    , Article IEEE Transactions on Applied Superconductivity ; Volume 30, Issue 1 , January , 2020 Moradnouri, A ; Vakilian, M ; Hekmati, A ; Fardmanesh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    The appealing advantages of high-temperature superconducting (HTS) power transformers over conventional ones have attracted transformer manufacturing companies, power companies, research institutes, and universities worldwide to conduct research and development in this field. Unfortunately, HTS transformers are more vulnerable to mechanical stresses than conventional transformers. The results of the interaction between current carrying windings and leakage magnetic fluxes are the electromagnetic forces, which act on transformer windings. Under short circuit events, these forces are remarkable, and, therefore, catastrophic failure of transformer may arise. Flux-diverter applications have been... 

    A Matrix-inversion technique for FPGA-based real-time EMT simulation of power converters

    , Article IEEE Transactions on Industrial Electronics ; Volume 66, Issue 2 , 2019 , Pages 1224-1234 ; 02780046 (ISSN) Hadizadeh, A ; Hashemi, M ; Labbaf, M ; Parniani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    This paper proposes a novel FPGA-based matrix-inversion technique that is specifically tailored and optimized for real-time electromagnetic transients simulation of power electronic converters with high switching frequency. This is the first reported solution that is capable of solving the real-time equations related to using ideal switch model and the associated circuitry in very small time-steps (e.g., an average of 36 ns in a three-phase back-to-back converter case study), without requiring large amount of memory, being limited to small number of switches, adding parasitic elements, or depending on a priori knowledge of the circuit operation or switching strategy. The accuracy of the...