Loading...
Search for: electron-energy-loss-spectroscopy
0.005 seconds

    Oxidation effects on transport characteristics of nanoscale MOS capacitors with an embedded layer of silicon nanocrystals obtained by low energy ion implantation

    , Article Materials Science and Engineering B: Solid-State Materials for Advanced Technology ; Volume 124-125, Issue SUPPL , 2005 , Pages 494-498 ; 09215107 (ISSN) Grisolia, J ; Shalchian, M ; Benassayag, G ; Coffin, H ; Bonafos, C ; Schamm, S ; Atarodi, S. M ; Claverie, A ; Sharif University of Technology
    2005
    Abstract
    In this paper, we have studied the effect of annealing under slightly oxidizing ambient (N2 + O2) on the structural and electrical characteristics of a limited number of silicon nanoparticles embedded in an ultra-thin SiO2 layer. These nanoparticles were synthesized by ultra-low energy (1 keV) ion implantation and annealing. Material characterization techniques including transmission electron microscopy (TEM), Fresnel imaging and spatially resolved electron energy loss spectroscopy (EELS) have been used to evaluate the effects of oxidation on structural characteristics of nanocrystal layer. Electrical transport characteristics have been measured on less than one hundred nanoparticles by... 

    Room-temperature quantum effect in silicon nanoparticles obtained by low-energy ion implantation and embedded in a nanometer scale capacitor

    , Article Applied Physics Letters ; Volume 86, Issue 16 , 2005 , Pages 1-3 ; 00036951 (ISSN) Shalchian, M ; Grisolia, J ; Assayag, G. B ; Coffin, H ; Atarodi, S. M ; Claverie, A ; Sharif University of Technology
    2005
    Abstract
    In this article, we present the room-temperature current-voltage characteristics of a nanometer scale (100×100 nm2) metal-oxide-semiconductor capacitor containing few (less than 100) silicon nanoparticles. The layer of silicon nanoparticles is synthesized within the oxide of this capacitor by ultra low-energy ion implantation and annealing. Current fluctuations in the form of discrete current steps and sharp peaks appeared in the static and dynamic I (V) characteristics of the capacitor. These features have been associated to quantized charging and discharging of the nanoparticles and the resulting Coulomb interaction to the tunneling current. © 2005 American Institute of Physics  

    Selection of empirical formulae for design of stepped spillways on RCC dams

    , Article World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability - Proceedings of the 2011 World Environmental and Water Resources Congress, 22 May 2011 through 26 May 2011 ; May , 2011 , Pages 2508-2517 ; 9780784411735 (ISBN) Sarfaraz, M ; Attari, J ; Sharif University of Technology
    2011
    Abstract
    Stepped spillways have been widely used in Roller Compacted Concrete (RCC) dams in the recent decades. Considering complexity of hydraulics of stepped chutes, their initial design involves pre-selection of some empirical formulae for calculation of flow characteristics and design parameters. In this paper, accuracy of several empirical formulae, proposed for calculating locations of aeration inception (LI), uniform flow (Lu) and rate of energy dissipation (ΔH/Hmax), were compared in relation to results of physical model tests of four stepped spillways and the preferred formulae, providing least amounts of relative errors, were identified. Such a feedback will be helpful for improvement of... 

    An efficient distributed cluster-head election technique for load balancing in wireless sensor network

    , Article Proceedings of the 2010 6th International Conference on Intelligent Sensors, Sensor Networks and Information Processing, ISSNIP 2010, 7 December 2010 through 10 December 2010, Brisbane, QLD ; 2010 , Pages 227-232 ; 9781424471768 (ISBN) Afkhami Goli, S ; Yousefi, H ; Movaghar, A ; Sharif University of Technology
    2010
    Abstract
    Energy constraint is the most critical problem in wireless sensor networks (WSNs). To address this issue, clustering has been introduced as an efficient way for routing. However, the available clustering algorithms do not efficiently consider the geographical information of nodes in cluster-head election. This leads to uneven distribution of cluster-heads and unbalanced cluster sizes that brings about uneven energy dissipation in clusters. In this paper, an Efficient Distributed Cluster-head Election technique for Load balancing (EDCEL) is proposed. The main criterion of the algorithm, dispersal of cluster-heads, is achieved by increasing the Euclidian distance between cluster-heads.... 

    Effect of a standing baffle on the flow structure in a rectangular open channel

    , Article Journal of Hydraulic Research ; Volume 48, Issue 3 , Jun , 2010 , Pages 400-404 ; 00221686 (ISSN) Jamshidnia, H ; Takeda, Y ; Firoozabadi, B ; Sharif University of Technology
    2010
    Abstract
    The effect of an intermediate standing baffle on the flow structure in a rectangular open channel has been investigated by a three-dimensional acoustic Doppler velocimeter. Investigation of time-averaged velocity profiles at different streamwise positions reveals that the approach flow is fully developed upstream of the baffle. By analysing the space-averaged power spectra of streamwise velocity, a peak structure was observed in the upstream baffle region. Downstream of the baffle this peak structure has been alleviated by the baffle. The same analysis for the vertical component indicates the existence of a peak structure both up- and downstream of the baffle. Consequently, a baffle affects... 

    Hierarchical on-chip routing of optical packets in large scale MPSoCs

    , Article Proceedings of the 18th Euromicro Conference on Parallel, Distributed and Network-Based Processing, PDP 2010, 17 February 2010 through 19 February 2010, Pisa ; 2010 , Pages 515-524 ; 9780769539393 (ISBN) Koohi, S ; Hessabi, S ; Sharif University of Technology
    2010
    Abstract
    In this paper, we extract analytical models for data transmission delay, power consumption, and energy dissipation of optical and traditional NoCs. Utilizing extracted models, we compare optical NoC with electrical one for varying values of link length and degree of multiplexing and calculate lower bound limit on the optical link length below which optical on-chip network loses its efficiency. Based on this constraint, we propose a novel hierarchical on-chip network architecture, named as H2NoC, which benefits from optical transmissions in large scale SoCs and overcomes the scalability problem resulted from lower bound limit on the optical link length. Performing a series of simulation-based... 

    Influence of stacking fault energy and short-range ordering on dynamic recovery and work hardening behavior of copper alloys

    , Article Scripta Materialia ; Volume 62, Issue 9 , May , 2010 , Pages 693-696 ; 13596462 (ISSN) Hamdi, F ; Asgari, S ; Sharif University of Technology
    2010
    Abstract
    True stress vs. true strain responses of Cu-6 wt.% Al and Cu-12 wt.% Mn alloys are presented. While Cu-6 wt.% Al alloy shows the typical mechanical response of low stacking fault energy alloys, the Cu-12 wt.% Mn alloy behaved similarly to medium to high stacking fault energy alloys. These findings clearly show that while short-range ordering triggers slip planarity, it has a minor effect on total dynamic recovery of these copper alloys  

    Behaviour of an innovative universal structural connection under monotonic and cyclic shear loading

    , Article Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 31 May 2009 through 5 June 2009, Honolulu, HI ; Volume 2 , 2009 , Pages 765-775 ; 9780791843420 (ISBN) Khonsari, S ; England, G. L ; Mohammadi, A. R ; Sharif University of Technology
    Abstract
    A new structural connection with special unique features was developed. While under bending it showed very high rotational capacity, in shear, unlike other existing connections, it also demonstrated a large shear deformation capacity. The ductile response of this connection stems from its innovative geometry as well as the ductility of the elements embedded in it. Since the previous shear tests on the specimens of this connection were carried out under 'unrestricted' conditions, the tests reported here were all under 'restricted' conditions. These shear tests consisted of 'monotonie' as well as 'cyclic' tests on mild steel specimens. Due to the restrictions imposed on the specimens during... 

    Optimal DG placement in distribution systems using cost/worth analysis

    , Article World Academy of Science, Engineering and Technology ; Volume 37 , 2009 , Pages 746-753 ; 2010376X (ISSN) Ahmadigorji, M ; Abbaspour, A ; Rajabi Ghahnavieh, A ; Fotuhi Firuzabad, M ; Sharif University of Technology
    2009
    Abstract
    DG application has received increasing attention during recent years. The impact of DG on various aspects of distribution system operation, such as reliability and energy loss, depend highly on DG location in distribution feeder. Optimal DG placement is an important subject which has not been fully discussed yet. This paper presents an optimization method to determine optimal DG placement, based on a cost/worth analysis approach. This method considers technical and economical factors such as energy loss, load point reliability indices and DG costs, and particularly, portability of DG. The proposed method is applied to a test system and the impacts of different parameters such as load growth... 

    Experimental and theoretical investigation of centrifugal compressor performance characteristics

    , Article Proceedings of the ASME Turbo Expo, 9 June 2008 through 13 June 2008, Berlin ; Volume 6, Issue PART B , 2008 ; 9780791843161 (ISBN) Motavalli, M ; Hajilouy Benisi, A ; Nili Ahmadabadi, M ; International Gas Turbine Institute ; Sharif University of Technology
    2008
    Abstract
    Prediction of compressor performance is a basic step in design of this turbomachine, while designer can optimize plan by considering various conditions and calculating machine performance. Flow field in centrifugal compressor is threedimensional and intricate. Since 2-D and 3-D methods are very costly, consequently the mean line method usually is used for predicting compressor performance. The energy loss coefficients are used for this method. Because of the intricacy in flow and analysis of losses, most energy loss coefficients are attained by experimental procedures, however just some of them are determined according to theory and nature of the flow field. The purpose of this work is... 

    Response of a novel beam-to-column connection to monotonic and cyclic flexural loading

    , Article Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 9 June 2008 through 13 June 2008, Berlin ; Volume 2 , 2008 , Pages 599-608 ; 9780791848197 (ISBN) Khonsari, S. V ; England, G. L ; Shahsavar Gargari, M ; Parvinnia, M. H ; Sharif University of Technology
    2008
    Abstract
    A new beam-to-column joint with high rotational as well as shear deformation capacity was devised. This high rotational 'capacity' is required to fulfill the great 'demand' for rotation arising during earthquakes, severe waves and current loads, etc. Due to its ability to contain damage during an overload, it leaves the connected elements intact. This, together with its replaceability can reduce the cost of post-event repair substantially. Its bending as well as shear performance under "monotonie" loading had already been assessed experimentally (OMAE'02-28864, OMAE'03-37292, OMAE'04-51494 & OMAE'05-6736l) and proved well superior to that of conventional joints. In order to study its... 

    Mechanism of transition metal interaction with graphene sheet reflected in its plasmonic excitations: Effect of gas adsorption phenomena studied by a combination of solid state and molecular orbital approaches

    , Article Applied Surface Science ; Volume 554 , July , 2021 ; 01694332 (ISSN) Kaderoğlu, Ç ; Shamkhali, A. N ; Safdari, F ; Abedi, M ; Ellialtıoğlu, Ş ; Sharif University of Technology
    Elsevier B. V  2021
    Abstract
    In this study, plasmonic properties of transition metal atoms (Sc-Zn, Pd, Pt) adsorbed on various sites of graphene sheets were investigated before and after CO adsorption by density functional theory (DFT). To this aim, Electron Energy Loss Spectroscopy (EELS) of these systems were obtained by periodic DFT. The results indicated that the highest in-plane plasmon peaks undergo blue shifts after CO adsorption, in such a way that Co–graphene system demonstrates the highest blue shift of 2.42 eV from Visible to UV region. Also, out-of-plane plasmons do not exhibit significant sensitivity to CO adsorption. For deeper understanding of electronic structure of metal-graphene systems, appropriate... 

    Evolution of quantum electronic features with the size of silicon nanoparticles embedded in a sio2 layer obtained by low energy ion implantation

    , Article 11th International Autumn Meeting on Gettering and Defect Engineering in Semiconductor Technology, GADEST 2005, 25 September 2005 through 30 September 2005 ; Volume 108-109 , 2005 , Pages 71-76 ; 10120394 (ISSN); 9783908451136 (ISBN) Grisolia, J ; Shalchian, M ; Benassayag, G ; Coffin, H ; Bonafos, C ; Dumas, C ; Atarodi, S. M ; Claverie, A ; Pichaud B ; Claverie A ; Alquier D ; Richter H ; Kittler M ; Richter H ; Kittler M ; Sharif University of Technology
    Trans Tech Publications Ltd  2005
    Abstract
    In this paper, we have studied the evolution of quantum electronic features with the size of silicon nanoparticles embedded in an ultra-thin SiO2 layer. These nanoparticles were synthesized by ultralow energy (1 KeV) ion implantation and annealing. Their size was modified using the effect of annealing under slightly oxidizing ambient (N2+O2). Material characterization techniques including transmission electron microscopy (TEM) Fresnel imaging and spatially resolved electron energy loss spectroscopy (EELS) have been used to evaluate the effects of oxidation on structural characteristics of nanocrystal layer. Electrical transport characteristics have been measured on few (less than two... 

    Investigation of the atomic-scale hysteresis in NC-AFM using atomistic dynamics

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 42, Issue 8 , 2010 , Pages 2069-2077 ; 13869477 (ISSN) Nejat Pishkenari, H ; Meghdari, A ; Sharif University of Technology
    2010
    Abstract
    In this paper, the hysteresis in the tipsample interaction force in noncontact force microscopy (NC-AFM) is measured with the aid of atomistic dynamics simulations. The observed hysteresis in the interaction force and displacement of the system atoms leads to the loss of energy during imaging of the sample surface. Using molecular dynamics simulations it is shown that the mechanism of the energy dissipation occurs due to bistabilities caused by atomic jumps of the surface and tip atoms in the contact region. The conducted simulations demonstrate that when a gold coated nano-probe is brought close to the Au(0 0 1) surface, the tip apex atom jumps to the surface, and instantaneously, four... 

    Hydrolysis kinetics of lead silicate glass in acid solution

    , Article Journal of Nuclear Materials ; Volume 389, Issue 3 , 2009 , Pages 427-431 ; 00223115 (ISSN) Rahimi, R. A ; Sadrnezhaad, Kh ; Raisali, G ; Hamidi, A ; Sharif University of Technology
    2009
    Abstract
    Hydrolysis kinetics of the lead silicate glass (LSG) with 40 mol% PbO in 0.5 N HNO3 aqueous acid solution was investigated. The surface morphology and the gel layer thickness were studied by scanning electron microscopy (SEM) micrographs. Energy dispersive X-ray spectroscopy (EDS) and inductively coupled plasma spectroscopy (ICP) were used to determine the composition of the gel layer and the aqueous solution, respectively. The silicon content of the dissolution products was determined by using weight-loss data and compositions of the gel layer and the solution. The kinetic parameters were determined using the shrinking-core-model (SCM) for rate controlling step. The activation energy... 

    Response of a novel beam-to-column/brace-to-frame connection to monotonic and cyclic shear loading

    , Article Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 9 June 2008 through 13 June 2008, Berlin ; Volume 2 , 2008 , Pages 609-618 ; 9780791848197 (ISBN) Khonsari, V ; England, G. L ; Abazarsa, F ; Ocean, Offshore, and Arctic Engineering Division; ASME ; Sharif University of Technology
    2008
    Abstract
    A new universal structural joint was developed. While in bending it has a high rotational capacity, which can be accompanied by large bending stiffness and strength, in shear, it also has a very high shear deformation capacity, which can again be accompanied with large shear stiffness and strength. While the former characteristic makes it a good candidate for being used as a beam-to-column joint, the latter makes it highly applicable in connecting braces of a braced frame to the frame members. The experimental study carried out previously on this joint, concentrated on the performance of its steel specimens under 'monotonie' shear loading as well as that of its aluminium specimens under both... 

    In vitro study: Bond strength, electrochemical and biocompatibility evaluations of TiO2/Al2O3 reinforced hydroxyapatite sol–gel coatings on 316L SS

    , Article Surface and Coatings Technology ; Volume 405 , 2021 ; 02578972 (ISSN) Ahmadi, R ; Afshar, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    To improve the biocompatibility and corrosion resistance of 316L SS (Stainless Steel) metal implants, HAp(hydroxyapatite)/TiO2/Al2O3 nanocomposite coating was created using dip sol-gel method sintered at 550 °C. The weight percentage of TiO2+ Al2O3 in these coatings was 20, 30, and 40% wt. In this study, characterization was performed using FTIR (Fourier-Transform Infrared Spectroscopy), XRD, FE-SEM (Field Emission Scanning Electron Microscope), EDS (Energy Dispersive Spectroscopy), DLS (Dynamic Light Scattering), Pull-off, and AFM (Atomic Force Microscopy) analysis. The potentiodynamic polarization and EIS (Electrochemical Impedance Spectroscopy) were performed in the simulated body fluid... 

    In vitro study: Bond strength, electrochemical and biocompatibility evaluations of TiO2/Al2O3 reinforced hydroxyapatite sol–gel coatings on 316L SS

    , Article Surface and Coatings Technology ; Volume 405 , 2021 ; 02578972 (ISSN) Ahmadi, R ; Afshar, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    To improve the biocompatibility and corrosion resistance of 316L SS (Stainless Steel) metal implants, HAp(hydroxyapatite)/TiO2/Al2O3 nanocomposite coating was created using dip sol-gel method sintered at 550 °C. The weight percentage of TiO2+ Al2O3 in these coatings was 20, 30, and 40% wt. In this study, characterization was performed using FTIR (Fourier-Transform Infrared Spectroscopy), XRD, FE-SEM (Field Emission Scanning Electron Microscope), EDS (Energy Dispersive Spectroscopy), DLS (Dynamic Light Scattering), Pull-off, and AFM (Atomic Force Microscopy) analysis. The potentiodynamic polarization and EIS (Electrochemical Impedance Spectroscopy) were performed in the simulated body fluid... 

    In vitro study: bond strength, electrochemical and biocompatibility evaluations of TiO2/Al2O3 reinforced hydroxyapatite sol–gel coatings on 316L SS

    , Article Surface and Coatings Technology ; 2020 Ahmadi, R ; Afshar, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    To improve the biocompatibility and corrosion resistance of 316L SS (Stainless Steel) metal implants, HAp(hydroxyapatite)/TiO2/Al2O3 nanocomposite coating was created using dip sol-gel method sintered at 550 °C. The weight percentage of TiO2+ Al2O3 in these coatings was 20, 30, and 40% wt. In this study, characterization was performed using FTIR (Fourier-Transform Infrared Spectroscopy), XRD, FE-SEM (Field Emission Scanning Electron Microscope), EDS (Energy Dispersive Spectroscopy), DLS (Dynamic Light Scattering), Pull-off, and AFM (Atomic Force Microscopy) analysis. The potentiodynamic polarization and EIS (Electrochemical Impedance Spectroscopy) were performed in the simulated body fluid... 

    Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus

    , Article Bioelectrochemistry ; Volume 123 , 2018 , Pages 70-76 ; 15675394 (ISSN) Ranjbar, S ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Since that pathogenic bacteria are major threats to human health, this paper describes the fabrication of an effective and durable sensing platform based on gold nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite (AuNPs/CNPs/CNFs) at the surface of glassy carbon electrode for sensitive and selective detection of Staphylococcus aureus (S. aureus). The AuNPs/CNPs/CNFs nanocomposite with the high surface area, excellent conductivity, and good biocompatibility was used for self-assembled of the thiolated specific S. aureus aptamer as a sensing element. The surface morphology of AuNPs/CNPs/CNFs nanocomposite was characterized with field emission scanning electron microscopy...