Loading...
Search for: elliptic-curve-cryptography
0.01 seconds

    An efficient low-latency point-multiplication over curve25519

    , Article IEEE Transactions on Circuits and Systems I: Regular Papers ; Volume 66, Issue 10 , 2019 , Pages 3854-3862 ; 15498328 (ISSN) Salarifard, R ; Bayat Sarmadi, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    The elliptic curve cryptography (ECC) has gained attention mainly due to its lower complexity compared to other asymmetric methods while providing the same security level. The most performance critical operation in ECC is the point multiplication. Thus, its efficient implementation is desirable. One of the most secure and lightweight ECC curves, which satisfies all standard security criteria, is the Curve25519. In this paper, a low latency Karatsuba-Ofman-based field multiplier (KOM) and an efficient point multiplication over Curve25519 have been proposed. The improvements have been achieved mainly due to the proposed low latency pipelined KOM and efficient scheduling of field operations.... 

    Efficient Implementation of Elliptic Curve Cryptography

    , Ph.D. Dissertation Sharif University of Technology Salarifard, Raziyeh (Author) ; Bayat-Sarmadi, Siavash (Supervisor)
    Abstract
    Elliptic curve cryptography (ECC) has received attention because it can achieve the same security level as other classical asymmetric methods while using a key with smaller length. Although ECC is more efficient compared to AlGemal and RSA cryptosystems, fast computation of ECC is always desirable. Point multiplication is an essential operation in cryptographic computations. Low-latency and low-complexity multiplication architectures lead to more efficient cryptosystems.In this thesis, a fixed-base comb point multiplication method has been used to perform regular point multiplication. Additionally, two low-complexity (LC) and low-latency (LL) architectures for the regular point... 

    Efficient Implementation of Elliptic Curve Scalar Multiplication without Division and Inversion Operations

    , M.Sc. Thesis Sharif University of Technology Mosanaei Bourani, Hatame (Author) ; Bayat-Sarmadi, Siavash (Supervisor)
    Abstract
    Elliptic curve cryptography (ECC) has received attention because it can achieve a security level similar to other asymmetric methods while using a key with smaller length. Although ECC is more efficient compared to other asymmetric methods, fast computation of ECC is always desirable. In this thesis,a fixed-base comb point multiplication method has been modified to perform regular point multiplication. Additionally, two low-complexity and lowlatency architectures for the modified point multiplication algorithm has been proposed. In order to achieve these architectures, a low-latency pipelined digit-level field multiplier for all national institute of standards and technology (NIST)... 

    Efficient Implementation of Elliptic Curve Cryptography on Curve-25519

    , M.Sc. Thesis Sharif University of Technology Rashidi Toghroljerdi, Zeinab (Author) ; Bayat Sarmadi, Siavash (Supervisor)
    Abstract
    Elliptic curve cryptography (ECC) has received attention because it can achieve a security level similar to other asymmetric methods while using a key with smaller length. Although ECC is more efficient compared to other asymmetric methods, fast computation of ECC is always desirable. In this thesis, a fixed-base comb point multiplication method has been modified to perform regular point multiplication. Additionally, two low-complexity and lowlatency architectures for the modified point multiplication algorithm has been proposed. In order to achieve these architectures, a low-latency pipelined digit-level field multiplier for all national institute of standards and technology (NIST)... 

    Reliable concurrent error detection architectures for extended euclidean-based division over (2m)

    , Article IEEE Transactions on Very Large Scale Integration (VLSI) Systems ; Vol. 22, Issue. 5 , 2014 , pp. 995-1003 Mozaffari-Kermani, M ; Azarderakhsh, R ; Lee, C. Y ; Bayat-Sarmadi, S ; Sharif University of Technology
    Abstract
    The extended Euclidean algorithm (EEA) is an important scheme for performing the division operation in finite fields. Many sensitive and security-constrained applications such as those using the elliptic curve cryptography for establishing key agreement schemes, augmented encryption approaches, and digital signature algorithms utilize this operation in their structures. Although much study is performed to realize the EEA in hardware efficiently, research on its reliable implementations needs to be done to achieve fault-immune reliable structures. In this regard, this paper presents a new concurrent error detection (CED) scheme to provide reliability for the aforementioned sensitive and... 

    Dynamic and secure key management model for hierarchical heterogeneous sensor networks

    , Article IET Information Security ; Volume 6, Issue 4 , 2012 , Pages 271-280 ; 17518709 (ISSN) Alagheband, M. R ; Aref, M. R ; Sharif University of Technology
    2012
    Abstract
    Many applications that utilise wireless sensor networks (WSNs) require essentially secure communication. However, WSNs suffer from some inherent weaknesses because of restricted communication and hardware capabilities. Key management is the crucial important building block for all security goals in WSNs. Most existing researches tried to assign keys assuming homogeneous network architecture. Recently, a few key management models for heterogeneous WSNs have been proposed. In this study, the authors propose a dynamic key management framework based on elliptical curve cryptography and signcryption method for heterogeneous WSNs. The proposed scheme has network scalability and sensor node (SN)... 

    Fully distributed ECC-based key management for mobile ad hoc networks

    , Article Computer Networks ; Volume 113 , 2017 , Pages 269-283 ; 13891286 (ISSN) Gharib, M ; Moradlou, Z ; Doostari, M. A ; Movaghar, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Dynamic nature of mobile ad hoc networks combined with their lack of centralized infrastructure make security problem the most challenging issue in such networks. The main contribution of this paper is to propose a secure and efficient key management algorithm, able to satisfying the requirement of such networks and facing their specific characteristics. The proposed algorithm is a fully distributed ID-based system which is built based on elliptic curve cryptography. The main advantage of the proposed algorithm, that gives it the superiority in its field of research, is the improvement of the performance and the security strength together. The proposed algorithm is implemented with much... 

    Low-latency double point multiplication architecture using differential addition chain over GF( 2 m)

    , Article IEEE Transactions on Circuits and Systems I: Regular Papers ; Volume 66, Issue 4 , 2019 , Pages 1465-1473 ; 15498328 (ISSN) Shahroodi, T ; Bayat-Sarmadi, S ; Mosanaei-Boorani, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    During the past decade, elliptic curve cryptography (ECC) has been widely deployed in different scenarios as the main asymmetric cryptosystem due to its smaller key length and relatively higher speed compared with other asymmetric cryptosystems. The most critical operation in ECC computation is point multiplication. In some popular applications such as signature verification schemes, the double point multiplication can be exploited. In this paper, we propose an algorithm and its corresponding architecture to speed up the double point multiplication using a modified binary differential addition chain. The proposed method is highly parallelizable and has been implemented on Virtex-4, Virtex-5,... 

    A secure key management framework for heterogeneous wireless sensor networks

    , Article Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 19 October 2011 through 21 October 2011 ; Volume 7025 LNCS , October , 2011 , Pages 18-31 ; 03029743 (ISSN) ; 9783642247118 (ISBN) Alagheband, M. R ; Aref, M. R ; Sharif University of Technology
    2011
    Abstract
    A Wireless sensor network (WSN) is composed of numerous sensor nodes with both insecurely limited hardware and restricted communication capabilities. Thus WSNs suffer from some inherent weaknesses. Key management is an interesting subject in WSNs because it is the fundamental element for all security operations. A few key management models for heterogeneous sensor networks have been proposed in recent years. In this paper, we propose a new key management scheme based on elliptic curve cryptography and signcryption method for hierarchical heterogeneous WSNs. Our scheme as a secure infrastructure has superior sensor node mobility and network scalability. Furthermore, we propose both a periodic... 

    A low-latency and low-complexity point-multiplication in ECC

    , Article IEEE Transactions on Circuits and Systems I: Regular Papers ; Volume 65, Issue 9 , 2018 , Pages 2869-2877 ; 15498328 (ISSN) Salarifard, R ; Bayat Sarmadi, S ; Mosanaei Boorani, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Elliptic curve cryptography (ECC) has received attention, because it can achieve the same security level as other asymmetric methods while using a key with smaller length. Although ECC is more efficient compared with other asymmetric methods, the fast computation of ECC is always desirable. In this paper, a fixed-base comb point multiplication method has been used to perform regular point multiplication. In addition, two low-complexity (LC) and low-latency (LL) architectures for the regular point multiplication using fixed-base comb method have been proposed. The point multiplication architectures have been implemented using field-programmable gate array and application-specific integrated... 

    Lightweight and fault-resilient implementations of binary ring-lwe for iot devices

    , Article IEEE Internet of Things Journal ; Volume 7, Issue 8 , 2020 , Pages 6970-6978 Ebrahimi, S ; Bayat Sarmadi, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    While the Internet of Things (IoT) shapes the future of the Internet, communications among nodes must be secured by employing cryptographic schemes such as public-key encryption (PKE). However, classic PKE schemes, such as RSA and elliptic curve cryptography (ECC) suffer from both high complexity and vulnerability to quantum attacks. During the past decade, post-quantum schemes based on the learning with errors (LWEs) problem have gained high attention due to the lower complexity among PKE schemes. In addition to resistance against theoretical (quantum and classic) attacks, every practical implementation of any cryptosystem must also be evaluated against different side-channel attacks such...