Loading...
Search for: emissive-layers
0.01 seconds

    Synthesis of CdS nanocrystals by a microwave activated method and investigation of the photoluminescence and electroluminescence properties

    , Article Applied Surface Science ; Volume 257, Issue 23 , September , 2011 , Pages 9796-9801 ; 01694332 (ISSN) Molaei, M ; Iranizad, E. S ; Marandi, M ; Taghavinia, N ; Amrollahi, R ; Sharif University of Technology
    2011
    Abstract
    We have synthesized CdS nanocrystals (NCs) by a microwave activated method. CdSO4 and Na2S2O3 were used as the precursors and thioglycolic acid (TGA) was used as capping agent molecule. The aqueous synthesis was based on the heat sensitivity of Na2S 2O3. In this method, microwave irradiation creates the activation energy for dissociation of Na2S2O3 and leads to the CdS NCs formation. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses demonstrated hexagonal phase CdS NCs with an average size around 3 nm for sample prepared at 5 min irradiation time. A band gap range of 3.38-2.89 eV was possible only by increasing the microwave irradiation time, corresponding to a... 

    Investigating the different conditions on solution processed MoOx thin film in long lifetime fluorescent polymer light emitting diodes

    , Article Materials Chemistry and Physics ; Volume 204 , 2018 , Pages 262-268 ; 02540584 (ISSN) Alehdaghi, H ; Marandi, M ; Irajizad, A ; Taghavinia, N ; Jang, J ; Zare, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Transition metal oxides are being more frequently used as hole injection layer (HIL) in organic light emitting diodes (OLEDs), in place of polymer HILs such as PEDOT:PSS. The very thin films of the metal oxide HILs are usually deposited using vapor deposition, in order to create uniform films. Here, we report OLEDs fabricated using solution processed MoOx films as the HIL and super yellow as the emissive layer. The performance of the devices is comparable to PEDOT:PSS based devices, while the stability tests show the lifetime of MoOx-based devices is 4 × 106 h, about 40 times longer than PEDOT:PSS devices, at typical working condition. X-ray photoelectron spectroscopy (XPS) indicates both...