Loading...
Search for: emulsions
0.005 seconds
Total 123 records

    Preparation of conductive polyaniline/graphene nanocomposites via in situ emulsion polymerization and product characterization

    , Article Synthetic Metals ; Vol. 196 , 2014 , pp. 199-205 Baniasadi, H ; Ramazani, S. A ; Mashayekhan, S ; Ghaderinezhad, F ; Sharif University of Technology
    Abstract
    This work, which is a part of our ongoing studies on developing conductive scaffolds for nerve tissue engineering, reports synthesis of highly conductive binary-doped polyaniline nanoparticles and polyaniline/graphene nanocomposites. The samples were synthesized through chemical oxidation of aniline via in situ emulsion polymerization method in presence of hydrochloric acid and sodium dodecyl sulfate. Graphene nanosheets were also prepared via modified Hummer's method followed by chemical reduction using hydrazine monohydrate. Electrical conductivity measurements using a standard four-point probe technique with FTIR and UV-vis studies revealed that conductive binary-doped emeraldine salt... 

    Studying the mechanistic behavior of heavy oil displacement using a group of alkalis and surfactant mixtures

    , Article Chemical Engineering Communications ; Volume 202, Issue 3 , 2015 , Pages 366-374 ; 00986445 (ISSN) Dehghan, A. A ; Jadaly, A ; Masihi, M ; Ayatollahi, S ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    In this study, a mixture-based sulfonate-based surfactant with a novel formula capable of functioning in real oil reservoir conditions was prepared and some microscopic parameters, like its compatibility state, emulsion behavior, interfacial tension, and temperature dependency in the presence of a heavy oil sample, and two of the most popular alkalis were analyzed; then the results were compared with those of a commercial sulfate-based surfactant. The designed surfactant provided an optimum three-phase region in relatively high salinity media; however, its optimum value decreased when adding any alkaline materials; this trend was reversed for the solutions made with the sulfate-based... 

    Recovery of surfactants from oil in water emulsions by electroflotation

    , Article 8th World Congress of Chemical Engineering: Incorporating the 59th Canadian Chemical Engineering Conference and the 24th Interamerican Congress of Chemical Engineering, 23 August 2009 through 27 August 2009, Montreal, QC ; 2009 Biria, D ; Mansouri, M ; Maghsoudi, E ; Roostaazad, R ; Dadafarin, H ; Sharif University of Technology
    Abstract
    An electroflotation technique was utilized to reclaim the surfactant molecules from oil-in-water emulsions. A two-staged separation mechanism was suggested to describe the process. The surfactant recovery efficiencies were higher than 70% after 30 min treatment. The method could be an effective process in recycling surfactants from the emulsions existing in industrial wastes. This is an abstract of a paper presented at the 8th World Congress of Chemical Engineering (Montreal, Quebec, Canada 8/23-27/2009)  

    Effect of magnetic field treatment on interfacial tension of CTAB nano-emulsion: developing a novel agent for enhanced oil recovery

    , Article Journal of Molecular Liquids ; Volume 261 , July , 2018 , Pages 107-114 ; 01677322 (ISSN) Saeedi Dehaghani, A. H ; Badizad, M. H ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Nanoemulsion is a novel type of emulsified solutions holding great promises for utilizing in industrial applications. Although microemulsions have been the subject of numerous studies in past decades, however, nanoemulsions are quite virgin and merit detailed investigation to scrutinize their characteristics specific to reservoir engineering, in particular, Enhanced Oil Recovery (EOR). To this end, the present study is an attempt to evaluate the effectiveness of a specific nanoemulsion for oil displacement through porous media. In this regard, flooding experiments were designed and Hexa decyl trimethylammonium bromide (CTAB), which is a cationic surfactant, was used as the emulsifying agent.... 

    Microbial population control in emulsion oil

    , Article Scientia Iranica ; Volume 6, Issue 5 , 2000 , Pages 111-114 ; 10263098 (ISSN) Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
    Sharif University of Technology  2000
    Abstract
    In this paper, controlling microbial degradation of water based metalworking system fluid, emulsion oil, is investigated using glutaraldehyde as biocide. Microbial population was determined through colony counting method. Evaluation and results demonstrate that a 15 day treatment by glutaraldehyde results in higher resistance to microbial deterioration. Analysis of variance through multiple comparison tests was conducted and Least Significant Difference (LSD) was determined. An overall observed paired difference between the first and second treatment is significant; therefore, the first treatment, with an addition of glutaraldehyde every 15 days is suggested  

    A mechanistic understanding of the water-in-heavy oil emulsion viscosity variation: effect of asphaltene and wax migration

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 608 , 2021 ; 09277757 (ISSN) Piroozian, A ; Hemmati, M ; Safari, M ; Rahimi, A ; Rahmani, O ; Aminpour, S. M ; Beiranvand Pour, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The role of emulsions as a prevalent phenomenon is broadly investigated in the petroleum industry since forming the emulsion has many severe harmful implications. Heavy components of crude oil such as wax and asphaltene make the water-in-oil (w/o) emulsion more stable, while the role of these components on the emulsion viscosity has not been fully understood. In this regard, to find a proper demulsifier to break these emulsions, it is necessary to know the mechanisms of emulsion formation by heavy oil components. In this study, the effects of waxy-oil and asphaltenic-oil on w/o emulsion were investigated by measuring volume and viscosity of the formed emulsion after an elapsed time, followed... 

    Evaluation of chemicals interaction with heavy crude oil through water/oil emulsion and interfacial tension study

    , Article Energy and Fuels ; Vol. 27, issue. 10 , September , 2013 , p. 5852-5860 ; ISSN: 08870624 Dehghan, A. A ; Masihi, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    A newly-designed surfactant was formulated to tolerate the harsh conditions of oil reservoirs, including high salinity of the formation brine and temperature. The specific emulsion and interfacial tension (IFT) behavior of this new surface active agent were investigated by performing emulsion stability tests, emulsion size analysis, and IFT behavior in the presence of four different types of alkalis. Image processing was utilized to analyze the droplet size distribution using microscopic images of the samples. The results show that depending on the composition of the mixtures, the optimum phase region and interfacial tension behavior change considerably. Solutions containing a higher... 

    The effect of dispersed phase salinity on water-in-oil emulsion flow performance: A micromodel study

    , Article Industrial and Engineering Chemistry Research ; Volume 56, Issue 15 , 2017 , Pages 4549-4561 ; 08885885 (ISSN) Maaref, S ; Ayatollahi, S ; Rezaei, N ; Masihi, M ; Sharif University of Technology
    American Chemical Society  2017
    Abstract
    In this work, the effect of brine salinity on water-in-oil emulsion flow performance in porous media is studied as it imposes a significant challenge to oil production in the petroleum industry. A crude oil sample from an Iranian oilfield and synthetic brine with different salinities (40-140 g/L salt) are used. The results show that the emulsion viscosity and interfacial tension increase slightly with salinity, while they do not considerably affect the flow behavior. The emulsion stability analysis shows that larger w/o emulsion droplets are formed for higher brine salinity, which potentially block more pore spaces through straining and interception mechanisms. This phenomenon resulted in... 

    Fouling reduction of emulsion polyvinylchloride ultrafiltration membranes blended by PEG: the effect of additive concentration and coagulation bath temperature

    , Article Desalination and Water Treatment ; Volume 57, Issue 26 , 2016 , Pages 11931-11944 ; 19443994 (ISSN) Davood Abadi Farahani, M. H ; Rabiee, H ; Vatanpour, V ; Borghei, S. M ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    In the present work, ultrafiltration membranes were prepared using emulsion polyvinyl chloride (EPVC) with the addition of various concentrations of polyethylene glycol (PEG) to investigate the morphological structure and separation properties. The effects of polymer concentration, coagulation bath temperature (CBT), and PEG (6 kDa) concentrations—a pore former hydrophilic additive—were studied. Through the phase inversion, the membranes—which were induced by immersion precipitation in a water coagulation bath—were fabricated through dissolving EPVC in N-methyl-pyrrolidinone, a polymer solvent. Morphological features of the membranes were characterized through scanning electron microscopy,... 

    Study and optimization of Amino Acid Extraction by emulsion Liquid Membrane

    , Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) Mohagheghe, E ; Vosoughi, M ; Alemzadeh, I ; Hexion Specialty Chemicals; Mitsubishi Chemical Corporation; CS Cabot; Zentiva; BorsodChem MCHZ ; Sharif University of Technology
    2006
    Abstract
    A batch extraction of an essential amino acid, Phenylalanine, from an aqueous solution of different concentrations by an Emulsion Liquid Membrane (ELM) was developed using D2EHPA as a cationic carrier, Span 80 as the surfactant, paraffin and kerosene as the diluents, and HCl as the internal electrolyte. All effective parameters such as pH of initial aqueous external phase, electrolyte concentration in aqueous internal phase, carrier and surfactant concentration in emulsion, volume ratio of the organic to aqueous internal phase (Roi), volume ratio of the W/O emulsion to aqueous external phase (Rew) and time were examined and optimized using Taguchi method which was the first time of... 

    Gas Separation by TEG and Zeolite Na-Y Nano Particles Liquid Membrane

    , M.Sc. Thesis Sharif University of Technology Asadollahi, Mahdieh (Author) ; Bastani, Dariuosh (Supervisor) ; Kazemian, Hossein (Supervisor)
    Abstract
    In this research, in order to investigate the effect of zeolites nanoparticles on the separation performance of a liquid membrane, a TEG/Nano Na-Y was developed. To do this, a high yield nano zeolite Na-Y was synthesized using mid-synthesis addition method . The synthesized samples were characterized by XRD, FT-IR, and SEM (EDX) instrumental techniques. A supported liquid membrane was prepared by impregnating a porous hydrophilic PVDF support with TEG and nano zeolite Na-Y. Permeances of single gas components of CO2, N2 and O2 were carried out at different pressures of 0.8, 1.8 and 3.7 bar. The single gases permeances were found to be: CO2 > N2 > O2. The results were shown that higher weight... 

    Separation and Treatment of Cutting Oil Emulsions using Electrocoagulation

    , M.Sc. Thesis Sharif University of Technology Maleknia, Arash (Author) ; Shahrokhian, Saeed (Supervisor) ; Nazari Alavi, Alireza (Supervisor)
    Abstract
    Cutting oils are used for reducing friction, cooling and preventing from corrosion in the industry. These oils are mixed in different proportions with water and produce emulsion. In this study, treatment of oil-water emulsions is studied using electrocoagulation with aluminum, copper and stainless steel electrodes as a pretreatment stage. The efficiency of electrocoagulation process was obtained through the measurement of COD removal percentage and or the required time for the treatment. COD is the required oxygen for oxidizing oxidizable materials through oxidizing substances in the solution.In this study, the effect of operating parameters such as emulsion concentration (volume/volume... 

    Studying the Mechanistic Behavior of Heavy Oil Displacement Using a Group of Alkalis and Surfactant Mixtures

    , Article Chemical Engineering Communications ; Vol. 202, issue. 3 , May , 2015 , p. 366-374 ; ISSN: 00986445 Dehghan, A. A ; Jadaly, A ; Masihi, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    In this study, a mixture-based sulfonate-based surfactant with a novel formula capable of functioning in real oil reservoir conditions was prepared and some microscopic parameters, like its compatibility state, emulsion behavior, interfacial tension, and temperature dependency in the presence of a heavy oil sample, and two of the most popular alkalis were analyzed; then the results were compared with those of a commercial sulfate-based surfactant. The designed surfactant provided an optimum three-phase region in relatively high salinity media; however, its optimum value decreased when adding any alkaline materials; this trend was reversed for the solutions made with the sulfate-based... 

    A novel technique to semi-quantitatively study the stability of emulsions and the kinetics of the coalescence under different dynamic conditions

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Vol. 460 , 2014 , pp. 327-332 ; ISSN: 09277757 Karbaschi, M ; Orr, R ; Bastani, D ; Javadi, A ; Lotfi, M ; Miller, R ; Sharif University of Technology
    Abstract
    The kinetics of coalescence is studied experimentally using a new technique for tracking the process in the bulk phase. For this aim, aqueous solutions of KSCN (colorless) and FeCl3 (light yellow) are used to make individual W/O emulsions. Any coalescence occurred between drops containing KSCN solution and those containing FeCl3 solution would combine these solutions. This leads to a reddish brown solution due to the formation of iron(III)thiocyanate. The intensity change of this red color with time represents the dynamics of coalescence occurring between drops of different emulsified aqueous droplets. The detector response to any changes in the system is recorded as a function of time. In... 

    High molecular weight polyacrylamide nanoparticles prepared by inverse emulsion polymerization: reaction conditions-properties relationships

    , Article Colloid and Polymer Science ; Volume 294, Issue 3 , 2016 , Pages 513-525 ; 0303402X (ISSN) Tamsilian, Y ; Ramazani S. A ; Shaban, M ; Ayatollahi, S ; Tomovska, R ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    High molecular weight polyacrylamide (PAM) nanoparticle dispersions are products with wide application possibilities, the most important of which is in petroleum industry such as drilling fluid and flooding agent in enhanced oil recovery. For that aim, it is necessary to achieve complete control of the final dispersion and polymer properties during the synthesis step. In this work, PAMs were synthesized by inverse emulsion polymerization of aqueous acrylamide solution in cyclohexane in the presence of emulsifier mixture of Span 20 and Span 80. We present a comprehensive study of the effects of variation of all important reaction conditions (agitation rate, reaction time and temperature,... 

    The effect of brine salinity on water-in-oil emulsion stability through droplet size distribution analysis: A case study

    , Article Journal of Dispersion Science and Technology ; 2017 , Pages 1-13 ; 01932691 (ISSN) Maaref, S ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    Water-in-oil emulsion usually forms during waterflooding in some heavy oil reservoirs. The composition and salinity of the injected water critically affect the w/o emulsion droplet size distribution, which control the emulsion stability and emulsion flow in porous media. The aim of the present work is to assess the effect of different sea water salinities on w/o emulsion stability through microscopic imaging. Therefore, w/o emulsions were prepared with different sea water samples, which were synthesized to resemble Persian Gulf, Mediterranean, Red Sea, and North Sea water samples. The results showed that log-normal distribution function predicts very well the experimental data to track the... 

    The effect of brine salinity on water-in-oil emulsion stability through droplet size distribution analysis: a case study

    , Article Journal of Dispersion Science and Technology ; Volume 39, Issue 5 , 2018 , Pages 721-733 ; 01932691 (ISSN) Maaref, S ; Ayatollahi, S ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    Water-in-oil emulsion usually forms during waterflooding in some heavy oil reservoirs. The composition and salinity of the injected water critically affect the w/o emulsion droplet size distribution, which control the emulsion stability and emulsion flow in porous media. The aim of the present work is to assess the effect of different sea water salinities on w/o emulsion stability through microscopic imaging. Therefore, w/o emulsions were prepared with different sea water samples, which were synthesized to resemble Persian Gulf, Mediterranean, Red Sea, and North Sea water samples. The results showed that log-normal distribution function predicts very well the experimental data to track the... 

    Inferential closed-loop control of particle size distribution for styrene emulsion polymerization

    , Article Chemical Engineering Science ; Volume 63, Issue 9 , 2008 , Pages 2378-2390 ; 00092509 (ISSN) Abedini, H ; Shahrokhi, M ; Sharif University of Technology
    2008
    Abstract
    In this work, a new control strategy for controlling the particle size distribution (PSD) in emulsion polymerization has been proposed. It is shown that the desired PSD can be achieved by controlling the free surfactant concentration which in turn can be done by manipulating the surfactant feed rate. Simulation results show that the closed-loop control of free surfactant concentration results in a better control of PSD compared to open-loop control strategy, in presence of model mismatch and disturbances. Since the on-line measuring of ionic free surfactant concentration is difficult, conductivity which is related to it is measured instead and used for control purposes. The closed-loop... 

    Experimental investigation of rheological and morphological properties of water in crude oil emulsions stabilized by a lipophilic surfactant

    , Article Journal of Dispersion Science and Technology ; Volume 34, Issue 3 , Feb , 2013 , Pages 356-368 ; 01932691 (ISSN) Sadeghi, M. B ; Ramazani, S. A. A ; Taghikhani, V ; Ghotbi, C ; Sharif University of Technology
    2013
    Abstract
    Rheological behavior of two crude oils and their surfactant-stabilized emulsions with initial droplet sizes ranging from 0.5 to 75 μm were investigated at various temperatures under steady and dynamic shear testing conditions. In order to evaluate the morphology and Stability of emulsions, microscopic analysis was carried out over three months and average diameter and size distribution of dispersed droplets were determined. The water content and surfactant concentration ranged from 10 to 60% vol/vol and 0.1 to 10% wt/vol, respectively. The results indicated that the rheological properties and the physical structure and stability of emulsions were significantly influenced by the water content... 

    Contribution of water-in-oil emulsion formation and pressure fluctuations to low salinity waterflooding of asphaltic oils: A pore-scale perspective

    , Article Journal of Petroleum Science and Engineering ; Volume 203 , 2021 ; 09204105 (ISSN) Salehpour, M ; Sakhaei, Z ; Salehinezhad, R ; Mahani, H ; Riazi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    During the low salinity waterflooding (LSWF) of a viscous asphaltic oil reservoir, fluid-fluid interactions have a large influence on the fluid flow, pore-scale events, and thus oil recovery efficiency and behavior. In-situ water-in-oil (W/O) emulsion formation is a consequence of crude oil and brine interfacial activities. Despite the published studies, the pore-scale mechanisms of W/O emulsion formation and the role of injected brine salinity, injection rate, and pore-scale heterogeneity on emulsion formation and stability requires a deeper understanding. To address these, a series of static and dynamic micro-scale experiments were performed. The salinity dependent oil-brine interactions...