Loading...
Search for: enclosures
0.006 seconds
Total 29 records

    CFD modeling of natural convection in right-angled triangular enclosures

    , Article International Journal of Heat and Technology ; Volume 34, Issue 3 , 2016 , Pages 503-506 ; 03928764 (ISSN) Mirabedin, S. M ; Sharif University of Technology
    Edizioni ETS  2016
    Abstract
    Two-dimensional numerical simulations have been performed to study natural convection in right-angled triangular enclosures filled with water considering different aspect ratios. Continuity, momentum and energy equations are solved assuming Boussinesq approximation utilizing COMSOL. Effect of Rayleigh number, Ra, on heat transfer rate is investigated by showing Nusselt number, Nu, for a range from 1 × 104 to 1 × 107 . It is shown that increasing aspect ratio of the cavity increases averaged Nusselt number in a cavity heated from below. Finally, a correlation for heat transfer rate is developed considering the effect of aspect ratio using simulation results  

    Measurement of heat characteristics of a new incubator with a chemical energy source

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 17, Issue 4 , 2004 , Pages 319-328 ; 17281431 (ISSN) Kakaee, A. H ; Farhanieh, B ; Khodadadeh, Y ; Sharif University of Technology
    National Research Center of Medical Sciences  2004
    Abstract
    A heat transfer model was developed for a new non-electric infant's transport incubator. The source of heat comprises a super saturated solution of Sodium Acetate and a metal disk (activator) in a plastic container. Estimating the number of the chemical bags required for different ambient temperature was the goal. First the quantity of heat generated by the chemical was appointed through experiments and use of a parameter estimation method. The number of the chemical bags were also estimated through a numerical-experimental method  

    Optimization of the size of scintillation detectors in order to use in an array of 20 detectors which is going to be placed in the Sharif University of Technology

    , Article Proceedings of the 32nd International Cosmic Ray Conference, ICRC 2011, 11 August 2011 through 18 August 2011, Beijing ; Volume 3 , 2011 , Pages 40-43 Pezeshkian, Y ; Mortazavi Moghaddam, S ; Hedayati, H ; Bahmanabadi, M ; Khalaj, P ; Sharif University of Technology
    Institute of High Energy Physics  2011
    Abstract
    As a primary step of establishment of an extensive air shower array consisting 20 scintillation detectors we optimized an individual detector. Square shaped scintillators are placed under a metal pyramid Light Enclosure with a photomultiplier tube (PMT) at the vertex of it. A set of experiments are performed to optimize the height of light enclosures by comparing 4 different heights 0.1, 0.2, 0.3 and 0.4 m. These experiments are supported by a Monte Carlo simulation of detection process. In this article, by considering experimental and simulation results we concluded that 20 cm is an optimum height for light enclosures  

    Natural convection in circular enclosures heated from below for various central angles

    , Article Case Studies in Thermal Engineering ; Volume 8 , 2016 , Pages 322-329 ; 2214157X (ISSN) Mirabedin, S. M ; Farhadi, F ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Two-dimensional numerical simulations have been performed to study natural convection in circular enclosures filled with water considering different central angles. Continuity, momentum and energy equations are solved assuming Boussinesq approximation utilizing COMSOL. Effect of Rayleigh number, Ra, on heat transfer rate is investigated by showing Nusselt number, Nu, for a range from 1×103 to 1×107. It is shown that decreasing central angle of the cavity increases averaged Nusselt number in a cavity heated from below. Finally, a correlation for heat transfer rate is developed considering the effect of the angle between two sides of the cavity and Ra number using simulation results  

    Numerical study of natural convection in vertical enclosures using a novel non-Boussinesq algorithm

    , Article Numerical Heat Transfer; Part A: Applications ; Volume 52, Issue 9 , 2007 , Pages 849-873 ; 10407782 (ISSN) Darbandi, M ; Hosseinizadeh, S. F ; Sharif University of Technology
    2007
    Abstract
    This article applies a novel non-Boussinesq numerical algorithm to solve the free-convection problem in a wide range of thin to thick vertical cavities subject to different side-wall temperatures. In this regard, the compressible flow equations are solved using a primitive incompressible method. No Boussinesq approximation and low Mach number consideration are included in the formulation. To implement the compressibility effect, the density field is calculated via the equation of state for gas. The temperature gradient is suitably varied to generate different low to high thermobuoyant fields, where the Boussinesq approximation may or may not be valid. Contrary to published works on the thin... 

    The step effect and particle removal from an enclosure

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Hendijanifard, M ; Saidi, M. H ; Taeibi Rahni, M ; Sharif University of Technology
    American Society of Mechanical Engineers  2006
    Abstract
    This paper reports the results of a study of the transient removal of contaminant particle from enclosures containing an obstacle. We study specially a phenomena occur sometimes called the step effect. This phenomenon may occur if the size of the obstacle is small enough in comparison with the length or height of the enclosure. These results are the basic instruments for finding a model for contaminant particle removal from an enclosure containing an obstacle. A numerical CFD code is developed and validated with different cases, and then proper two- and three-dimensional cases are modeled. The size of the obstacle affect the order of magnitude of the convection-diffusion terms in the... 

    The effects of obstacle and vent position on particle removal from an enclosure

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Hendijanifard, M ; Saidi, M. H ; Taeibi Rahni, M ; Sharif University of Technology
    American Society of Mechanical Engineers  2006
    Abstract
    This paper reports the results of a study of the transient removal of contaminant particle from enclosures. These results are the basic instruments for finding a model for contaminant particle removal from an enclosure containing an obstacle. A numerical CFD code is developed and validated with different cases, then proper two- and three-dimensional cases are modeled and improvements are done. The improvements are done by proper positioning the inlet/outlet vents. The size and position of the obstacle affect the order of magnitude of the convection-diffusion terms in the Navier-Stokes equations, hence results in different phenomena while removing the particles. One of these phenomena, the... 

    Numerical Investigation of Fire Characteristics and Behavior in Confined Spaces; Near-Field and Far-Field Phenomena

    , Ph.D. Dissertation Sharif University of Technology Kazemipour, Ali (Author) ; Farhanieh, Bijan (Supervisor) ; Afshin, Hossein (Co-Advisor)
    Abstract
    Safety against fire and its potential destructions is provided by detection, protection and ventilation methods. Knowledge on fire behavior such as ignition and propagation along with heat and smoke release is essential for implementing these methods. Having such deep information, the fire can be detected at the correct time and be controlled or suppressed, with its heat and smoke removed efficiently, so that rescue services will be enhanced and fatalities and damages will be reduced.Numerical simulation of fire requires deep understanding of multiple phenomena including turbulent flows, conductive, convective and radiative heat transfer, large buoyancy forces, chemical reactions and... 

    Experimental Investigation of Melting of Two Immiscible Phase Change Material

    , M.Sc. Thesis Sharif University of Technology Momeni, Meisam (Author) ; Behshad Shafii, Mohammad (Supervisor)
    Abstract
    Heat transfer associated with phase change occurs in many physical phenomena. One of the ways of thermal energy storage is the use of latent heat phase change. Therefore, it is important to know the thermal performance of phase change material. In this research, the aim is to investigate the process of phase change of a system consists of two immiscible phase change materials and the comparison of this system with a system consists of one phase change material. The experiments with the two materials system is conducted in two ways. In the first state, that is the normal state, denser material is placed in the bottom and in the second state, denser material is placed in the top. Constant heat... 

    Effect of geometrical parameters on radiometric force in low-pressure MEMS gas actuator

    , Article Microsystem Technologies ; Volume 24, Issue 5 , 2018 , Pages 2189-2198 ; 09467076 (ISSN) Barzegar Gerdroodbary, M ; Domiri Ganji, D ; Taeibi Rahni, M ; Vakilipour, S ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    In this paper, comprehensive numerical studies are performed to investigate the effects of the geometrical factors on the performance of the low-pressure gas actuator. The flow feature and force generation mechanism inside a rectangular enclosure with heat and cold arms as the non-isothermal walls are inclusively discussed. Also, comprehensive parametric studies are done to reveal the effects of physical parameters on the performance and characteristics of this device in different operating conditions. In this study, the Knudsen number is varied from 0.1 to 4.5 to investigate all characteristics of the thermal-driven force inside the MEMS sensor. In order to simulate a rarefied gas inside... 

    Materials selection for electronic enclosures in space environment considering electromagnetic interference effect

    , Article Advances in Space Research ; Volume 49, Issue 3 , February , 2012 , Pages 586-593 ; 02731177 (ISSN) Fayazbakhsh, K ; Abedian, A ; Sharif University of Technology
    2012
    Abstract
    Using low power electronic devices for space applications to reduce the mass and energy consumption has lead to electromagnetic interference (EMI) problem. Electronic enclosures are used to shield electronic devices against EMI. In the past, electromagnetic shielding has been mainly the only criteria considered in electronic enclosure design. However, there are several structural and thermal requirements for selection of shielding materials which should also be taken into account. In this research work, three quantitative materials selection methods, i.e. Digital Logic (DL), Modified Digital Logic (MDL), and Z-transformation, are employed to select the best material from among a list of... 

    Effect of several heated interior bodies on turbulent natural convection in enclosures

    , Article Scientia Iranica ; Volume 26, Issue 3B , 2019 , Pages 1335-1349 ; 10263098 (ISSN) Nouri Borujerdi, A ; Sepahi, F ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    In this study, turbulent natural convection in a square enclosure including one or four hot and cold bodies is numerically investigated in the range of Rayleigh numbers of 1010 < Ra < 1012. The shape of the internal bodies is square or rectangular with the same surface areas and different aspect ratios. In all cases, the horizontal walls of the enclosure are adiabatic, and the vertical ones are isothermal. It is desired to investigate the influence of different shapes and arrangements of internal bodies on the heat transfer rate inside the enclosure with wide-ranging applications such as ventilation of buildings, electronic cooling, and industrial cold box packages. Governing equations,... 

    Effect of several heated interior bodies on turbulent natural convection in enclosures

    , Article Scientia Iranica ; Volume 26, Issue 3B , 2019 , Pages 1335-1349 ; 10263098 (ISSN) Nouri Borujerdi, A ; Sepahi, F ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    In this study, turbulent natural convection in a square enclosure including one or four hot and cold bodies is numerically investigated in the range of Rayleigh numbers of 1010 < Ra < 1012. The shape of the internal bodies is square or rectangular with the same surface areas and different aspect ratios. In all cases, the horizontal walls of the enclosure are adiabatic, and the vertical ones are isothermal. It is desired to investigate the influence of different shapes and arrangements of internal bodies on the heat transfer rate inside the enclosure with wide-ranging applications such as ventilation of buildings, electronic cooling, and industrial cold box packages. Governing equations,... 

    Heat transfer hybrid nanofluid (1-Butanol/MoS2–Fe3O4) through a wavy porous cavity and its optimization

    , Article International Journal of Numerical Methods for Heat and Fluid Flow ; 2020 Hosseinzadeh, K ; Montazer, E ; Shafii, M. B ; Ganji, D. D ; Sharif University of Technology
    Emerald Group Holdings Ltd  2020
    Abstract
    Purpose: The purpose of this paper is to investigate natural convection in a porous wavy-walled enclosure that is including a cylinder cavity in the middle of it and filled with a hybrid nanofluid contains 1-Butanol as the base fluid and MoS2–Fe3O4 hybrid nanoparticles. Design/methodology/approach: The domain of interest is bounded by constant temperature horizontal corrugated surfaces and isothermal vertical flat surfaces. The numerical outputs are explained in the type of isotherms, streamline and average Nusselt number with variations of the Rayleigh number, Hartmann number, nanoparticle shape factor and porosity of the porous medium. For solving the governing equations, the finite... 

    Imposed magnetic field impact on vortex generation in the laminar nanofluid flow: A computational approach

    , Article International Communications in Heat and Mass Transfer ; Volume 139 , 2022 ; 07351933 (ISSN) Ali, K ; Prakash, M ; Jamshed, W ; Ibrahim, R. W ; Ahmad, S ; Raizah, Z ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Metal manufacturing plants, nuclear power plants (which produce steam, by using thermal energy yielded during the nuclear fission, for spinning enormous turbines to generate electricity), and geothermal power plants are a few in the extensive list of technologies where different processes occur in high temperature environment in the presence of strong magnetic fields. Nanofluids (NFs), on the other hand, have been successful in achieving wide acceptance as the next generation coolant in the above mentioned industries as well as in the automobiles, heat exchangers, and steam boilers, owing to their remarkable thermal performance. These observations motivate the authors to explore the change... 

    Simulating Firefighting Scenarios in Enclosures

    , M.Sc. Thesis Sharif University of Technology Amiri, Pezhman (Author) ; Farhanieh, Bijan (Supervisor)
    Abstract
    Fire in enclosures is one of the most important disasters due to the presence of human and physical risks, so, investigation of the firefighting scenarios in this case has much importance. In the present study, novel enclosures fire suppression scenarios are simulated using computational fluid dynamics (CFD). The simulations have two major categories. In the first part, performance of different natural ventilation, positive pressure ventilation (PPV) and negative pressure ventilation (NPV) scenarios, which are new methods in firefighting, are evaluated and compared. In this part, the influence of different parameters like geometry, position of inlet and outlets and fire heat release rate... 

    Numerical Investigation of Parameters Affecting the Behavior of Backdraft Phenomena and Its Extinguishing

    , M.Sc. Thesis Sharif University of Technology Parsa, Sina (Author) ; Farhanieh, Bijan (Supervisor)
    Abstract
    Fires in buildings and closed environments are considered as the most important types of fires due to the possibility of the presence of people and the possibility of life-threatening. Understanding and predicting fire behavior is critical to preventing damage. Backdraft is a special phenomenon of fire that occurs in a chamber with limited ventilation. In a closed environment where there is fire, over time, due to the closed doors and windows, the oxygen required for combustion decreases and as a result, semi-combustible materials can be dangerously exposed to the environment with flammable vapors and gases. Fill and when sufficient air reaches this chamber, a sudden explosion or the same... 

    Machine Learning-Based Positioning in Optical Communication Networks Using a Camera: Indoors and Underwater

    , M.Sc. Thesis Sharif University of Technology Seyed Tabatabaei, Raouf (Author) ; Shabany, Mahdi (Supervisor) ; Hashemi, Matin (Supervisor)
    Abstract
    Positioning refers to the process of estimating the receiver coordinates aiming for an accurate understanding of the surrounding environment. This branch of science has attracted considerable attention in recent years. Today, the influence sphere of positioning is so expanded that encompasses applications in daily life (e.g., navigation) as well as commercial and even military fields. Global Positioning System (GPS) is the most widely used tool in real-time positioning. Because GPS imposes great measurement errors in challenging conditions (e.g., turbulent water environments), alternative methods such as methods based on Wi-Fi, Bluetooth, and visible light have been proposed. Benefiting... 

    Simulation of Natural Convection Inside an Enclosure with Several Heated Bodies

    , M.Sc. Thesis Sharif University of Technology Sepahi, Farzan (Author) ; Nouri, Ali (Supervisor)
    Abstract
    in this study, turbulent natural convection inside an air filled square cavity with several hot and cold internal bodies in the range of Rayleigh numbers between 1010 and 1012 has been investigated numerically. Vertical walls of the enclosure have been considered isothermal and horizontal walls are insulated in all cases. An appropriate arrangement of internal bodies in which the minimum heat transfer occurs is desired. For this purpose, two dimensional Reynolds-averaged Navier-Stokes equations have been solved with the finite volume discretization method in a staggered grid. In addition, two equation high-Reynolds-number model with standard wall functions is used to simulate the... 

    Numerical study of enhanced heat transfer by coupling natural and electro-convections in a horizontal enclosure

    , Article Journal of Enhanced Heat Transfer ; Volume 18, Issue 6 , 2011 , Pages 503-511 ; 10655131 (ISSN) Ghazi, R ; Saidi, M. S ; Saidi, M. H ; Sharif University of Technology
    2011
    Abstract
    The heat transfer enhancement of natural convection using an electrohydrodynamic technique inside a horizontal enclosure heated from below is studied numerically. The interactions between the electric field, flow field, and temperature field are investigated by computational fluid dynamics methods. The flow and temperature fields are affected by voltage applied to the wire electrodes. For different voltages and numbers of electrodes, it is noticed that the Nusselt number increases in all cases and the best enhancement is obtained at lower Rayleigh numbers. It is also shown that increasing the number of electrodes does not always cause an increase in the heat transfer enhancement. Actually,...