Loading...
Search for: end-effectors
0.005 seconds
Total 30 records

    Investigating dynamic interaction between the one D.O.F. Manipulator and vehicle of a mobile manipulator

    , Article Journal of Intelligent and Robotic Systems: Theory and Applications ; Volume 28, Issue 3 , 2000 , Pages 277-290 ; 09210296 (ISSN) Meghdari, A ; Durali, M ; Naderi, D ; Sharif University of Technology
    2000
    Abstract
    A manipulator mounted on a moving vehicle is called a mobile manipulator. A mobile manipulator with an appropriate suspension system can pass over uneven surfaces, thus having an infinite workspace. If the manipulator could operate while the vehicle is traveling, the efficiency concerning with the time and energy used for stopping and starting will be increased. This paper presents the kinematic and dynamic modeling of a one degree of freedom manipulator attached to a vehicle with a two degrees of freedom suspension system. The vehicle is considered to move with a constant linear speed over an uneven surface while the end effector tracks a desired trajectory in a fixed reference frame. In... 

    Error Reduction in Spatial Robots Based on the Statistical Uncertainty Analysis

    , Article SAE International Journal of Materials and Manufacturing ; Volume 8, Issue 2 , 2015 ; 19463979 (ISSN) Khodaygan, S ; Hafezipour, M ; Sharif University of Technology
    SAE International  2015
    Abstract
    Kinematic accuracy of the robot end-effector is decreased by many uncertainties. In order to design and manufacture robots with high accuracy, it is essential to know the effects of these uncertainties on the motion of robots. Uncertainty analysis is a useful method which can estimate deviations from desired path in robots caused by uncertainties. This paper presents an applied formulation based on Direct Linearization Method (DLM), for 3D statistical uncertainty analysis of open- loop mechanisms and robots. The maximum normal and parallel components of the position error on the end-effector path are introduced. In this paper, uncertainty effects of both linear and angular variations in... 

    A novel upper-limb rehabilitation robot with 4 DOFs: design and prototype

    , Article Proceedings of the 6th RSI International Conference on Robotics and Mechatronics, IcRoM 2018, 23 October 2018 through 25 October 2018 ; 2019 , Pages 434-438 ; 9781728101279 (ISBN) Sepahi, S ; Hashemi, A ; Jafari, M ; Sharifi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In recent years, robotic rehabilitation has been utilized in treatment and recovery of patients with disabilities. In this paper, a novel design and kinematic analysis of a 4-DOF robot for upper-limb rehabilitation are proposed. The main novelty of this design is its mechanism for wrist and fingers motions which is added to the shoulder and elbow mechanism without any noticeable weight increase in the moving parts of the robot. For this purpose, a cable driven mechanism is implemented at the robot end-effector to move the wrist and fingers parts, and the corresponding actuators are placed at the base of the robot. © 2018 IEEE  

    Design of a force-reflective master robot for haptic telesurgery applications: RoboMaster1

    , Article Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS ; 2011 , Pages 7037-7040 ; 1557170X (ISSN) ; 9781424441211 (ISBN) Hadavand, M ; Mirbagheri, A ; Salarieh, H ; Farahmand, F ; Sharif University of Technology
    Abstract
    With the increasing trend toward Minimally Invasive Surgery (MIS) procedures, the need to develop new robotic systems to facilitate such surgeries is more and more recognized. This paper describes the design and development of a 4 DOF force-reflective master robot (RoboMaster1) for haptic telesurgery applications. A two-double parallelogram robot is introduced including a novel mechanism at the base for producing and control of the end effector's linear motion. This eliminates the deficiencies caused due to suspending massive actuators at the end effector or cabling from the base. The kinematics and work space of the system were analyzed and a prototype was developed for primary practical... 

    A cable-suspended robot with a novel cable based end effector

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 3 , July , 2010 , Pages 799-808 ; 9780791849170 (ISBN) Saber, O ; Abyaneh, S ; Zohoor, H ; ASME Section ; Sharif University of Technology
    2010
    Abstract
    Object handling is one of the most important applications of cable-suspended robots, which can be obtained by use of a gripper as its end-effector. In this paper, a novel cable-driven multi-finger gripper assembled on a cable-suspended robot has been presented. Using lock/unlock mechanisms, the under-actuated finger mechanism has been designed to have a human like motion. A cable-suspended robot structure with 3 position degrees of freedom is also proposed by employing active/passive cables in such a way that makes it capable of resisting external moments, while it may be simplified to a spatial point-mass cable robot during positioning operation. Furthermore, the robot workspace has been... 

    Planning of dynamic compensation manipulator motions for stability enhancement of mobile manipulators by soft computing

    , Article 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006, Chicago, IL, 5 November 2006 through 10 November 2006 ; 2006 ; 10716947 (ISSN); 0791837904 (ISBN); 9780791837900 (ISBN) Ghaffari, A ; Naderi, D ; Meghdari, A ; Eslami, S ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2006
    Abstract
    Mobile manipulators are developed in order to execute separately in various regions where there is not possibility for human to appear there. Recently, the size of mobile manipulators has been decreased according to their given tasks. For such systems, the stability issue is very important. The robot system should be able to keep itself in an optimal situation. For reaching to this goal, one can use a redundant degree of freedom for the mobile manipulator such that this redundancy makes it possible to recover the system's stability by dynamic compensatory motion of manipulator when the system is unstable. In this paper, we present an algorithm which is fast enough to stabilize the mobile... 

    History matching of naturally fractured reservoirs based on the recovery curve method

    , Article Journal of Petroleum Science and Engineering ; Vol. 126, issue , February , 2015 , p. 211-221 ; ISSN: 09204105 Ghaedi, M ; Masihi, M ; Heinemann, Z. E ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    The discrete fracture network (DFN) and Multiple-Continua concept are among the most widely used methods to model naturally fractured reservoirs. Each faces specific limitations. The recently introduced recovery curve method (RCM) is believed to be a compromise between these two current methods. In this method the recovery curves are used to determine the amount of mass exchanges between the matrix and fracture mediums. Two recovery curves are assigned for each simulation cell, one curve for gas displacement in the presence of the gravity drainage mechanism, and another for water displacement in the case of the occurrence of the imbibition mechanism. These curves describe matrix-fracture... 

    A neuro-fuzzy inference system for sEMG-based identification of hand motion commands

    , Article IEEE Transactions on Industrial Electronics ; Volume 58, Issue 5 , 2011 , Pages 1952-1960 ; 02780046 (ISSN) Khezri, M ; Jahed, M ; Sharif University of Technology
    2011
    Abstract
    Surface electromyogram (sEMG) signals, a noninvasive bioelectric signal, can be used for the rehabilitation and control of artificial extremities. Current sEMG pattern-recognition systems suffer from a limited number of patterns that are frequently intensified by the unsuitable accuracy of the instrumentation and analytical system. To solve these problems, we designed a multistep-based sEMG pattern-recognition system where, in each step, a stronger more capable relevant technique with a noticeable improved performance is employed. In this paper, we utilized the sEMG signals to classify and recognize six classes of hand movements. We employed an adaptive neurofuzzy inference system (ANFIS) to... 

    Design and analysis of a 3-link micro-manipulator actuated by piezoelectric layers

    , Article Mechanism and Machine Theory ; Volume 112 , 2017 , Pages 43-60 ; 0094114X (ISSN) Ahmadian, M. T ; Jafarishad, H ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The purpose of this paper is to design and analyze a 3-link micro-device proposed as a micro-manipulator. This micro-manipulator includes 3 micro-beams as links connected to one another with no conventional or flexural joints. While the structure of the micro-manipulator is monolithic, end-effector workspace is achieved through deflection of links which is actuated by piezoelectric layers. By combining static analysis of the links through a multilayer piezoelectric beam model and kinematic analysis of the micro-manipulator, inverse kinematic has been solved utilizing the Taylor series expansion technique and the perturbation method. The obtained results through the present model reveal that... 

    Model of contact friction based on extreme value statistics

    , Article Friction ; Volume 7, Issue 4 , 2019 , Pages 327-339 ; 22237690 (ISSN) Malekan, A ; Rouhani, S ; Sharif University of Technology
    Tsinghua University Press  2019
    Abstract
    We propose a model based on extreme value statistics (EVS) and combine it with different models for single-asperity contact, including adhesive and elasto-plastic contacts, to derive a relation between the applied load and the friction force on a rough interface. We determine that, when the summit distribution is Gumbel and the contact model is Hertzian, we obtain the closest conformity with Amonton’s law. The range over which Gumbel distribution mimics Amonton’s law is wider than that of the Greenwood–Williamson (GW) model. However, exact conformity with Amonton’s law is not observed for any of the well-known EVS distributions. Plastic deformations in the contact area reduce the relative... 

    Rigid vs compliant contact: an experimental study on biped walking

    , Article Multibody System Dynamics ; Volume 45, Issue 4 , 2019 , Pages 379-401 ; 13845640 (ISSN) Khadiv, M ; Moosavian, S. A. A ; Yousefi-Koma, A ; Sadedel, M ; Ehsani Seresht, A ; Mansouri, S ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    Contact modeling plays a central role in motion planning, simulation and control of legged robots, as legged locomotion is realized through contact. The two prevailing approaches to model the contact consider rigid and compliant premise at interaction ports. Contrary to the dynamics model of legged systems with rigid contact (without impact) which is straightforward to develop, there is no consensus among researchers to employ a standard compliant contact model. Our main goal in this paper is to study the dynamics model structure of bipedal walking systems with rigid contact and a novel compliant contact model, and to present experimental validation of both models. For the model with rigid... 

    Decentralized impedance control of nonredundant multi-manipulator systems

    , Article 2008 IEEE International Conference on Networking, Sensing and Control, ICNSC, Sanya, 6 April 2008 through 8 April 2008 ; 2008 , Pages 206-211 ; 9781424416851 (ISBN) Sadati, N ; Ghaffarkhah, A ; Sharif University of Technology
    2008
    Abstract
    In this paper, we propose a decentralized control scheme for combined motion/force control of nonredundant multi-manipulator robotic systems, cooperatively grasping a rigid body in a prespecifled position/force trajectory. The proposed control scheme uses the impedance method for modeling the internal force exerted by the end effectors to the object. The precise mathematical analysis of the overall dynamical system and the proposed controller are presented and the stability of the overall system is studied. The proposed controller, then, is applied to a cooperative system composed of two PUMA560 manipulators and the simulation results are presented to verify the proposed control scheme  

    Adaptive impedance control of UAVs interacting with environment using a robot manipulator

    , Article 2014 2nd RSI/ISM International Conference on Robotics and Mechatronics, ICRoM 2014 ; Oct , 2014 , p. 636-641 Sayyaadi, H ; Sharifi, M ; Sharif University of Technology
    Abstract
    In this paper, a nonlinear adaptive impedance controller is proposed for UAVs equipped with a robot manipulator that interacts with environment. In this adaptive controller, by considering the nonlinear dynamics model of the UAV plus the robot manipulator in Cartesian coordinates, all of model parameters are considered to be completely uncertain and their estimation is updated using an adaptation law. The objective of the proposed adaptive controller is the control of manipulator's end-effector impedance in Cartesian coordinates to have a stable physical interaction. The adjustable Cartesian impedance is a desired dynamical relationship between the end-effector motion in Cartesian... 

    A fresh insight into the non-linear vibration of double-tapered atomic force microscope cantilevers by considering the Hertzian contact theory

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 225, Issue 1 , 2011 , Pages 233-247 ; 09544062 (ISSN) Sadeghi, A ; Zohoor, H ; Sharif University of Technology
    Abstract
    The non-linear flexural vibration for a double-tapered atomic force microscope cantilever has been investigated by using the Timoshenko beam theory. In this article, the normal and tangential tip-sample interaction forces are found from the Hertzian contact model, and the effects of the contact position, normal and lateral contact stiffness, height of the tip, thickness of the beam, angle between the cantilever and the sample surface, and breadth and height taper ratios on the non-linear frequency to linear frequency ratio have been studied. The differential quadrature method is employed to solve the non-linear differential equations of motion. The results show that the softening behaviour... 

    Mechanical design, fabrication, kinematics and dynamics modeling, multiple impedance control of a wrist rehabilitation robot

    , Article International Conference on Robotics and Mechatronics, ICROM 2015, 7 October 2015 through 9 October 2015 ; 2015 , Pages 290-295 ; 9781467372343 (ISBN) Sajadi, M. R ; Nasr, A ; Moosavian, S. A. A ; Zohoor, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Rehabilitation is the best approach for patients who suffer physical disability of their upper-limbs. Maintaining the intensity of exercise during treatment is the main factor that makes the robots suitable for rehabilitation since robots do not get tired and do the exercises with constant intensity under supervision of the doctor. Two main categories of rehabilitation robots are End-Effector based robots and wearable robots. According to the fact that most problems occur in need of rehabilitation for hand wrist area, in this paper a wearable rehabilitation robot has been developed for the wrist. Nowadays, wearable robots attract more attention than the other group. Wearable robots are... 

    Dynamic analysis of an n-revolute planar serial manipulator and sensitivity analysis based on Sobol's method

    , Article International Conference on Robotics and Mechatronics, ICROM 2015, 7 October 2015 through 9 October 2015 ; 2015 , Pages 569-574 ; 9781467372343 (ISBN) Mehrafrooz, B ; Mohammadi, M ; Masouleh, M. T ; Sharif University of Technology
    2015
    Abstract
    In this paper, dynamic modeling and dynamic sensitivity analysis of an n-revolute planar serial robot are investigated. First, a dynamic modeling algorithm is proposed which is based on the concept of the so-called Natural Orthogonal Complement. The main goal of this algorithm consists in deriving the corresponding dynamic equations of a planar serial manipulator systematically. As a comparison study, 3-DOF a planar serial manipulator is modeled and the results of the proposed algorithm is compared with other methods, i.e., Newton-Euler, Lagrange-Euler, Adams software and an Open Dynamics Engine, the so-called MatODE. Then, in order to develop a dynamic sensitivity analysis scheme, Sobol's... 

    Collision-free path planning of a novel reconfigurable mobile parallel mechanism

    , Article International Conference on Robotics and Mechatronics, ICROM 2015, 7 October 2015 through 9 October 2015 ; 2015 , Pages 389-394 ; 9781467372343 (ISBN) Nozari Porshokouhi, P ; Kazemi, H ; Masouleh, M. T ; Novin, R. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    This paper initially deals with the design of a new customized reconfigurable mobile parallel mechanism. This mechanism is called "Taar Reconfigurable ParaMobile (TRPM)", consisting of three mobile robots as the main actuators. Then, the kinematics and path planning for this mechanism are represented. The newly proposed mechanism is expected to circumvent some shortcomings of inspection operation in unknown environments with unexpected changes in their workspace, e.g., in a water pipe with non-uniform section area. In this paper, "Artificial Potential Field (APF)" has been assumed to be the path planning algorithm and its resulting attractive and repulsive forces are only applied to the... 

    Path planning of 3-RRR parallel robot by avoiding mechanical interferences via Artificial Potential Field

    , Article International Conference on Robotics and Mechatronics, ICROM 2015, 7 October 2015 through 9 October 2015 ; 2015 , Pages 240-245 ; 9781467372343 (ISBN) Kazemi, H ; Porshokouhi, P. N ; Masouleh, M. T ; Novin, R. S ; Sharif University of Technology
    2015
    Abstract
    This paper deals with the collision-free path planning of planar parallel robot by avoiding mechanical interferences and obstacle within the workspace. For this purpose, an Artificial Potential Field approach is developed. As the main contribution of this paper, In order to circumvent the local minima problem of the potential fields, a novel approach is proposed which is a combination of Potential Field approach, Fuzzy Logic and also a novel algorithm consisting of Following Obstacle as well as Virtual Obstacle methods, as a hybrid method. Moreover, the inverse kinematic problem of the 3-RRR parallel robot is analyzed and then the aforementioned hybrid method is applied to this mechanism in... 

    History matching of naturally fractured reservoirs based on the recovery curve method

    , Article Journal of Petroleum Science and Engineering ; Volume 126 , 2015 , Pages 211-221 ; 09204105 (ISSN) Ghaedi, M ; Masihi, M ; Heinemann, Z. E ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    The discrete fracture network (DFN) and Multiple-Continua concept are among the most widely used methods to model naturally fractured reservoirs. Each faces specific limitations. The recently introduced recovery curve method (RCM) is believed to be a compromise between these two current methods. In this method the recovery curves are used to determine the amount of mass exchanges between the matrix and fracture mediums. Two recovery curves are assigned for each simulation cell, one curve for gas displacement in the presence of the gravity drainage mechanism, and another for water displacement in the case of the occurrence of the imbibition mechanism. These curves describe matrix-fracture... 

    A fast 3D hand model reconstruction by stereo vision system

    , Article 2010 The 2nd International Conference on Computer and Automation Engineering, ICCAE 2010, 26 February 2010 through 28 February 2010, Singapore ; Volume 5 , 2010 , Pages 545-549 ; 9781424455850 (ISBN) Sangi, M ; Jahed, M ; Sharif University of Technology
    2010
    Abstract
    The use of human hand gestures as a natural interface tool has motivated researchers to conduct research in the modeling, analyzing and recognition of various hand movements. In particular, human computer intelligent interaction has been a focus for research in vision-based gesture recognition. In this work, we introduce a 3D hand model reconstruction method which offers flexible and elaborate representation of hand gestures. We used 20 landmarked points on tips and joints of the fingers and calculated the 3D coordinates of these points through a stereo vision system. Our results show that such reconstruction provides a precise 3D hand model only to be influenced by intrinsic and extrinsic...