Loading...
Search for: energy-crisis
0.009 seconds

    Optimization of MHD generator based combined cycle efficiency

    , Article 2005 ASME Power Conference, Chicago, IL, 5 April 2005 through 7 April 2005 ; Volume PART B , 2005 , Pages 1209-1214 ; 0791841820 (ISBN); 9780791841822 (ISBN) Saidi, M. H ; Rezaei, H. D ; Mozafari, A. A ; Dehkordy, A. J ; ASME Power Division ; Sharif University of Technology
    American Society of Mechanical Engineers  2005
    Abstract
    Energy crisis has directed scientific efforts to increase the efficiency of power generation systems. Thermodynamic optimization of MHD (Magneto Hydrodynamic) generator based combined cycles due to their high operating temperatures may seriously reduce exergy destruction and improve the second law efficiency. In this research a combined cycle, comprising of MHD cycle as topping and gas turbine cycle as bottoming cycle has been simulated and analyzed and its pros and cons have been exposed. The first and second law efficiencies have been estimated from the operating pressures and temperatures of the system. To calculate the second law efficiency, the entropy generation of all components of... 

    Nickel-based nanosheets array as a binder free and highly efficient catalyst for electrochemical hydrogen evolution reaction

    , Article International Journal of Hydrogen Energy ; Volume 47, Issue 82 , 2022 , Pages 34887-34897 ; 03603199 (ISSN) Faraji, H ; Hemmati, K ; Mirabbaszadeh, K ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Hydrogen technology through water electrolyzer systems has attracted a great attention to overcome the energy crisis. So, rationally designed non-noble metal based-electrocatalysts with high activity and durability can lead to high performance water electrolyzer systems and high purity hydrogen generation. Herein, a facile two-step method: hydrothermal and electrodeposition, respectively, are developed to decorate highly porous three-dimensional binder-free structure NiFeO/NiO nanosheets array on Ni foam (NiFeO/NiO/NF) with robust adhesion as a high-performance electrode for Hydrogen Evolution Reaction (HER). The electrodeposition process applied after the initial hydrothermal process...