Loading...
Search for: energy-function
0.007 seconds
Total 34 records

    Predictions of some internal microstructural models for polymer melts and solutions in shear and elongational flows

    , Article Macromolecular Theory and Simulations ; Volume 13, Issue 7 , 2004 , Pages 655-664 ; 10221344 (ISSN) Eslami, H ; Ahmad Ramazani, S. A ; Ali Khonakdarl, H ; Sharif University of Technology
    2004
    Abstract
    In this work, the behavior of some internal microstructural models with different mobility tensors has been studied for polymer melts and solutions under steady and transient simple shear and elongational flows. The time evolution equations for conformation and stress tensors in the models reviewed have their root in the Generalized Poisson bracket formalism. Two different families of conformational models have been selected for this study. The first family is based on the Modified Finitely Extensible Nonlinear Elastic (FENE-P) energy while the second uses a Volume Preserving Conformational Rheological (VPCR) model based on the Hookean Helmholtz free energy function. Several expressions for... 

    A hyperelastic constitutive model for rubber-like materials

    , Article European Journal of Mechanics, A/Solids ; Volume 38 , 2013 , Pages 144-151 ; 09977538 (ISSN) Khajehsaeid, H ; Arghavani, J ; Naghdabadi, R ; Sharif University of Technology
    2013
    Abstract
    Hyperelastic behavior of isotropic incompressible rubbers is studied to develop a strain energy function which satisfies all the necessary characteristic properties of an efficient hyperelastic model. The proposed strain energy function includes only three material parameters which are somehow related to the physical quantities of the material molecular network. Moreover, the model benefits from mathematical simplicity, well suitting in all ranges of stretch and possessing the property of deformation-mode-independency. This reduces the required number of experimental tests for parameter calibration of the model. Results of the proposed model are compared with results of some available models... 

    Investigation of a new mean temperature-dependent potential energy function for methane and its use for the prediction of transport properties

    , Article Molecular Physics ; Volume 105, Issue 10 , 2007 , Pages 1453-1463 ; 00268976 (ISSN) Nahaly, M ; Parsafar, G. A ; Goharshadi, E. K ; Sharif University of Technology
    2007
    Abstract
    In this work an improved mean potential energy function for the interaction of an isolated pair of methane is obtained, from which the non-equilibrium properties of methane at zero pressure limit are calculated, accurately. The potential energy function of 21 different fixed orientations of (CH4)2 dimer has been obtained via the coupled cluster method. In order to obtain a mean potential energy function, the Boltzmann-average of the obtained potentials of the selected fixed orientations has been used. Unlike the full potential energy surface with the angle-dependent, the parameters of the mean potential are found to be temperature-dependent. The mean potential energy function is fitted well... 

    Thermodynamic Properties of Aqueous Electrolyte Solutions Containing Urea

    , M.Sc. Thesis Sharif University of Technology Samieenasab, Ahmad Reza (Author) ; Ghotbi, Siroos (Supervisor) ; Taghikhani, Vahid (Supervisor)
    Abstract
    The behavior of biomolecules in mixtures is affected by the presence of electrolytes. For instance, in the presence of an electrolyte, solubility of most biomolecules like proteins,peptids and amino acids can be increased or decreased. As a biomolecule, urea is a protein denaturant and influences protein folding and protein-DNA binding. The presence of ions can affect the interactions between urea and water In this thesis, experimental data of density and electrical conductance of aqueous solutions of urea-NaCl were obtained at different physical conditions. Density measurement experiments were carried out at different temperatures from 20-40 oC. Apparent and infinite dilution molar volumes... 

    On properties of a particular class of directed graphs used in stability analysis of flocking algorithms

    , Article Proceedings of the IEEE International Conference on Control Applications, 3 October 2012 through 5 October 2012 ; 2012 , Pages 605-608 ; 1085-1992 (ISSN) ; 9781467345033 (ISBN) Atrianfar, H ; Haeri, M ; Sharif University of Technology
    2012
    Abstract
    In this paper, we present sufficient conditions to address a larger class of digraphs, including balanced ones, whose members' Laplacian (L) makes L 1L + LTL1 to be positive semi-definite, where L1 is the Laplacian associated with a fully connected equally-edged weighted graphs. This property can be later utilized to introduce an appropriate energy function for stability analysis of flocking algorithms in a larger class of networks with switching directed information flow. Also, some of their properties are investigated in the line of matrix theory and graph theory  

    Modification of Repulsive and Attraction Branches of the Potential Models to Calculate the Equilibrium and Transport Properties of Liquids

    , M.Sc. Thesis Sharif University of Technology Razavi Majarashin, Asghar (Author) ; Parsafar, GHolamabbas (Supervisor)
    Abstract
    Several potential models such as Sutherland (ST) and square-well (SW) potential models are used for studying the equilibrium and transport properties. Near and above the inversion temperature these potential models fail to predict the second virial coefficient, so they are not applicable at high temperatures. ST and SW potential models have two different branches; one branch is related to the attraction forces and the other to the repulsive forces. Each branch has its own unique parameters, for example parameters of attraction branch are ε/k (the depth of the potential model) and λ (the width of the potential model). Repulsive branch has only one parameter, σ (the molecular diameter).... 

    Consistent Strain Energy Functions for Transversely Isotropic and Orthotropic Hyperelastic Materials

    , M.Sc. Thesis Sharif University of Technology Fereidoonnezhad, Behrouz (Author) ; Naghdabadi, Reza (Supervisor) ; Sohrabpour, Saeed (Supervisor) ; Arghavani, Jamal (Co-Advisor)
    Abstract
    Process Variation is seen as statistical variations in leakage current and delay of transistors in nano-scale technologies. The amount of process variations increase as the size of transistors decrease by technology scaling such that those effects can be seen in frequency of MPSoC (Multi-Processor System-on-Chip) cores and their leakage power deviation. These variations cause the tasks duration and power consumption fluctuate in different processors in an MPSoC instance. Consequently, some chip instances of the same MPSoC may consume more time and power than their considered limitations. Hence considering the process variation is necessary and required for MPSoC optimization at different... 

    , M.Sc. Thesis Sharif University of Technology Emami Talaremi, Ali Asghar (Author) ; Naghdabadi, Reza (Supervisor) ; Sohrabpour, Saeed (Supervisor)
    Abstract
    Increasing the application of elastomeric structures in industries has caused an interest in the researchers for nonlinear elasticity and viscoelasticity of solids. Such materials which show large deformation and rate dependent behavior are treated by visco-hyperelastic constitutive equations. Based on visco-hyperelastic constitutive equations, total stress is divided into two parts: quasi-static and viscous stress. The method for determining the visco-hyperelastic constitutive equation is strictly dependent on the chosen rheological model. In this project, a new visco-hyperelasic constitutive equation in the integral form was introduced based on the Zener model. Also, based on the internal... 

    Dynamic Simulation of Heart Mitral Valve

    , M.Sc. Thesis Sharif University of Technology Darvishan, Majid (Author) ; Zohoor, Hassan (Supervisor) ; Sohrabpoor, Saeeid (Supervisor)
    Abstract
    Two methods for simulating material behavior of heart mitral valve leaflet tissue are developed in this thesis, in the finite element setting. First, a mixed pressure-displacement formulation is used to implement the constitutive material behavior with general 3D elements. Second, a shell is formulated that incorporates the 3D material behavior by use of a local plane stress iteration method. Both of these works are based on an existing invariant-based strain energy function that has been experimentally determined for the mitral valve leaflet tissue. Since this material is considered to be nearly incompressible, a mixed pressure-displacement (u/p) formulation is needed to apply the material... 

    A hyperelastic constitutive model for fiber-reinforced rubber-like materials

    , Article International Journal of Engineering Science ; Volume 71 , 2013 , Pages 36-44 ; 00207225 (ISSN) Fereidoonnezhad, B ; Naghdabadi, R ; Arghavani, J ; Sharif University of Technology
    2013
    Abstract
    In this paper, a Strain Energy Function (SEF) is proposed to characterize the hyperelastic behavior of transversely isotropic incompressible fiber-reinforced rubbers. The kinematics of the deformation is based on a strain measure consistent with the physics of the deformation. The SEF consists of an isotropic part and an anisotropic one where a simple form of SEF is used for both parts. In order to investigate the capabilities of the proposed model, two fiber-reinforced rubbers under homogeneous deformations are examined. The predictions of the model show a good agreement with the experimental data for both tensile and shear deformations. Also, torsion of a fiber-reinforced rubbery circular... 

    A strain energy function for rubber-like materials

    , Article Constitutive Models for Rubber VIII - Proceedings of the 8th European Conference on Constitutive Models for Rubbers, ECCMR 2013 ; 2013 , Pages 205-210 ; 9781138000728 (ISBN) Khajehsaeid, H ; Naghdabadi, R ; Arghavani, J ; Sharif University of Technology
    2013
    Abstract
    Hyperelastic behavior of isotropic incompressible rubbers are studied to develop a strain energy function. The proposed function includes only three material parameters which are related to physical properties of the material molecular network. Furthermore, the model benefits from well suitting in all ranges of stretch as well as possessing the property of deformation mode independency. This reduces the required number of experimental tests for parameter calibration. Results of the model are compared with results of Mooney-Rivlin, Arruda-Boyce, Gent and Gao models as well as the experimental data  

    Enhanced autoionization of water at phospholipid interfaces

    , Article Journal of Physical Chemistry C ; Volume 117, Issue 1 , 2013 , Pages 510-514 ; 19327447 (ISSN) Mashaghi, A ; Partovi Azar, P ; Jadidi, T ; Anvari, M ; Jand, S. P ; Nafari, N ; Tabar, M. R. R ; Maass, P ; Bakker, H. J ; Bonn, M ; Sharif University of Technology
    2013
    Abstract
    The structure and autoionization of water at the water-phospholipid interface are investigated by ab initio molecular dynamics and ab initio Monte Carlo simulations using local density approximation (LDA) and generalized gradient approximation (GGA) for the exchange-correlation energy functional. Depending on the lipid headgroup, strongly enhanced ionization is observed, leading to the dissociation of several water molecules into H+ and OH- per lipid. The results can shed light on the phenomena of the high proton conductivity along membranes that has been reported experimentally  

    Allocating the cost of transient stability constraint relief in bilateral electricity markets

    , Article IET Generation, Transmission and Distribution ; Volume 5, Issue 11 , 2011 , Pages 1124-1131 ; 17518687 (ISSN) Kheradmandi, M ; Feuillet, R ; Ehsan, M ; Hadj-Saied, N ; Sharif University of Technology
    2011
    Abstract
    In this study, the issue of allocating the cost of transient stability relief in a bilateral electricity market is investigated. The results of a constrained generation scheduling problem can be utilised in two ways to price the cost of a constraint. In the first method, which is the basis of nodal pricing, the Lagrange multipliers of the nodal power balance constraint are used as the price of electricity at various buses. In the second method, which is used in this study, the constraint relief scheme is based on a bid-based adjustment market of increments and decrements offered by generators to be involved in the constraint relief process. In the scheme used in this study, the cost of... 

    Rescheduling of power systems constrained with transient stability limits in restructured power systems

    , Article Electric Power Systems Research ; Volume 81, Issue 1 , 2011 , Pages 1-9 ; 03787796 (ISSN) Kheradmandi, M ; Ehsan, M ; Feuillet, R ; Hadj-Saied, N ; Sharif University of Technology
    2011
    Abstract
    This paper investigates various approaches to relieve the transient stability constraint in restructured power systems. The approaches adopted fall into two broad categories: those based on eliminating the constraint in the least-cost way and those based on eliminating with the least possible rescheduling. The latter group can, on the other hand, emerge in the form of a pool-protected policy in which the bilateral contracts are rescheduled to maintain the stability or in the form of a contract-protected policy in which the realizable bilateral contracts are maximized while minimizing the rescheduling in pool market. Transient energy function (TEF) method is used as a tool to calculate the... 

    Computation of some thermodynamic properties of nitrogen using a new intermolecular potential from molecular dynamics simulation

    , Article Chemical Physics ; Volume 358, Issue 3 , 2009 , Pages 185-195 ; 03010104 (ISSN) Kafshdar Goharshadi, E ; Abbaspour, M ; Namayandeh Jorabchi, M ; Nahali, M ; Sharif University of Technology
    2009
    Abstract
    A new pair-potential energy function of nitrogen has been determined via the inversion of reduced viscosity collision integrals and fitted to obtain an analytical potential form. The pair-potential reproduces the second virial coefficient, viscosity, thermal conductivity, self-diffusion coefficient, and thermal diffusion factor of nitrogen in a good accordance with experimental data over wide ranges of temperatures and densities. We have also performed the molecular dynamics simulation to obtain pressure, internal energy, heat capacity at constant volume, and self-diffusion coefficient of nitrogen at different temperatures and densities using our calculated pair-potential and some other... 

    Power system transient stability improvement using fuzzy controlled STATCOM

    , Article 2006 International Conference on Power System Technology, POWERCON2006, Chongqing, 22 October 2006 through 26 October 2006 ; 2006 ; 1424401119 (ISBN); 9781424401116 (ISBN) Zolghadri, M. R ; Ghafori, A ; Ehsan, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2006
    Abstract
    In this paper a fuzzy logic based controller for STATCOM is used to improve power system transient stability. As opposed to the modern control theory, fuzzy logic design is not based on the mathematical model of the process. The controller designed using fuzzy logic implements human reasoning that can be programmed into fuzzy logic language (membership functions, rules and the rule interpretation). The nonlinear fuzzy controller is proposed to supply a supplementary control signal to STATCOM to increase the critical clearing time and overcome the uncertainties existing in the power systems. Proposed method is implemented in a single machine infinite bus system and the results are compared... 

    A rule-based advanced static var compensator control scheme for transient stability improvement

    , Article Scientia Iranica ; Volume 13, Issue 4 , 2006 , Pages 327-336 ; 10263098 (ISSN) Abazari, S ; Ehsan, M ; Zolghadri, M. R ; Mahdavi, J ; Sharif University of Technology
    Sharif University of Technology  2006
    Abstract
    The paper presents the application of a rule- based control scheme for an Advanced Static Var Compensator (ASVC) to improve power system transient stability. The proposed method uses a current reference, based on the Transient Energy Function (TEF) approach. The proposed scheme provides, also, a continuous control of the reactive power flow. The performance of the proposed approach is compared with that of a system using a conventional control method and of a system without ASVC. A single-machine system and an IEEE three machine system are used to verify the performance of the proposed method. © Sharif University of Technology  

    Dynamic Security Assessment in Restructured Power Systems

    , Ph.D. Dissertation Sharif University of Technology Kheradmandi, Morteza (Author) ; Ehsan, Mahdi (Supervisor)
    Abstract
    This thesis addresses the problem of dynamic security assessment in power sys-tems with an emphasis on its application in restructured power systems and issues arising in its applications. The new electric utility environment has an immedi-ate consequence of emphasis on reliability and secure operation of power systems. This requires faster and more precise methods to assess the dynamic aspect of se-curity. On the other hand, this issue is becoming challenging when the determined dispatch might not be accommodated due to violation of the limits.This thesis addresses the problem of dynamic security assessment in power sys-tems with an emphasis on its application in restructured power systems... 

    A visco-hyperelastic constitutive model for rubber-like materials: A rate-dependent relaxation time scheme

    , Article International Journal of Engineering Science ; Volume 79, June , 2014 , Pages 44-58 ; ISSN: 00207225 Khajehsaeid, H ; Arghavani, J ; Naghdabadi, R ; Sohrabpour, S ; Sharif University of Technology
    Abstract
    A three-dimensional visco-hyperelastic constitutive model is developed to describe the rate-dependent behavior of rubber-like materials at large deformations. The model encompasses a hyperelastic part which uses the "Exp-Ln" strain energy function to characterize the equilibrium response and a viscous part capturing the rate sensitivity using a hereditary integral form which links the overstress to the history of stored strain energy. A physically consistent rate-dependent relaxation time scheme is introduced which reduces the number of required material parameters and also facilitates the calibration process. The proposed model is verified using various uniaxial experimental data in... 

    A viscoelastic constitutive model for compressible polymers based on logarithmic strain and its finite element implementation

    , Article Finite Elements in Analysis and Design ; Volume 62 , 2012 , Pages 18-27 ; 0168874X (ISSN) Naghdabadi, R ; Baghani, M ; Arghavani, J ; Sharif University of Technology
    2012
    Abstract
    In this paper, employing the logarithmic (or Hencky) strain as a more physical measure of strain, the time-dependent response of compressible viscoelastic materials is investigated. In this regard, we present a phenomenological finite strain viscoelastic constitutive model, developed within the framework of irreversible thermodynamics with internal variables. The formulation is based on the multiplicative decomposition of the deformation gradient into elastic and viscoelastic parts, together with the use of the isotropic property of the Helmholtz strain energy function. Making use of a logarithmic mapping, we present an appropriate form of the proposed constitutive equations in the...